1887

Abstract

Strain CRRU44 was isolated from the stems of plants growing in Salamanca (Spain). The phylogenetic analysis of the 16S rRNA gene sequence places this strain within the family showing that it is equidistant to the type species of several genera from this family with similarity values ranging from 91.0 to 96.3 %. Strain CRRU44 formed a divergent lineage which clustered with RZME27, HAMBI540 and R1-200B4. The phylogenomic analysis showed that strain CRRU44 was equal to or more distant from the remaining genera of the family than other genera among them. The calculated average nucleotide identity based on and average amino acid identity values with respect to the type species of all genera from the family were lower than 78.5 and 76.5 %, respectively, which are the currently cut-off values proposed to differentiate genera within this family. All these results together with those from phenotypic and chemotaxonomic analyses support that strain CRRU44 represents a novel species of a novel genus within the family , for which the name gen. nov., sp. nov. is proposed (type strain CRRU44=CECT 30117=LMG 31822).

Funding
This study was supported by the:
  • Junta de Castilla y León (Award CLU-2O18-04)
    • Principle Award Recipient: NotApplicable
  • Ministerio de Ciencia e Innovación (Award PID2019-109960RB-I00)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005789
2023-04-24
2024-04-25
Loading full text...

Full text loading...

References

  1. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda M del C, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res 2016; 183:92–99 [View Article] [PubMed]
    [Google Scholar]
  2. Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 2019; 19:29–37 [View Article]
    [Google Scholar]
  3. Omomowo OI, Babalola OO. Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 2019; 7:481 [View Article]
    [Google Scholar]
  4. Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 2019; 221:36–49 [View Article] [PubMed]
    [Google Scholar]
  5. Golovinskaia O, Wang CK. Review of functional and pharmacological activities of berries. Molecules 2021; 26:3904 [View Article]
    [Google Scholar]
  6. Zia-Ul-Haq M, Riaz M, De Feo V, Jaafar HZE, Moga M. Rubus fruticosus L.: constituents, biological activities and health related uses. Molecules 2014; 19:10998–11029 [View Article] [PubMed]
    [Google Scholar]
  7. Schulz M, Seraglio SKT, Della Betta F, Nehring P, Valese AC et al. Blackberry (Rubus ulmifolius Schott): chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res Int 2019; 122:627–634 [View Article]
    [Google Scholar]
  8. Contreras M, Loeza PD, Villegas J, Farias R, Santoyo G. A glimpse of the endophytic bacterial diversity in roots of blackberry plants (Rubus fruticosus). Genet Mol Res 2016; 15:gmr [View Article] [PubMed]
    [Google Scholar]
  9. Roca-Couso R, Flores-Félix JD, García-Fraile P, Rivas-González R. Evaluation of biofungicide activity of endophytic bacteria isolated from blackberry bush (Rubus ulmifolius schott) against two phytopathogenic fungi. First Electronic Conference on Agronomy 2021
    [Google Scholar]
  10. Fagen JR, Leonard MT, Coyle JF, McCullough CM, Davis-Richardson AG et al. Liberibacter crescens gen. nov., sp. nov., the first cultured member of the genus Liberibacter. Int J Syst Evol Microbiol 2014; 64:2461–2466 [View Article]
    [Google Scholar]
  11. Menéndez E, Flores-Félix JD, Ramírez-Bahena MH, Igual JM, García-Fraile P et al. Genome analysis of Endobacterium cerealis, a novel genus and species isolated from Zea mays roots in North Spain. Microorganisms 2020; 8:939 [View Article]
    [Google Scholar]
  12. Flores-Félix JD, Menéndez E, Ramírez-Bahena MH, Peix A, García-Fraile P et al. Agrobacterium cavarae sp. nov., isolated from maize (Zea mays L.) roots. Int J Syst Evol Microbiol 2020; 70:5512–5519 [View Article]
    [Google Scholar]
  13. Delamuta JRM, Scherer AJ, Ribeiro RA, Hungria M. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. Int J Syst Evol Microbiol 2020; 70:4233–4244 [View Article] [PubMed]
    [Google Scholar]
  14. Castellano-Hinojosa A, Correa-Galeote D, Ramírez-Bahena M-H, Tortosa G, González-López J et al. Agrobacterium leguminum sp. nov., isolated from nodules of Phaseolus vulgaris in Spain. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  15. Liu L, Shi S, Liang L, Xu L, Chi M et al. Neorhizobium lilium sp. nov., an endophytic bacterium isolated from Lilium pumilum bulbs in Hebei province. Arch Microbiol 2020; 202:609–616 [View Article] [PubMed]
    [Google Scholar]
  16. Li M, Liu Y, Liu K, Luo S, Yi X et al. Pararhizobium mangrovi sp. nov., isolated from Aegiceras corniculatum stem. Curr Microbiol 2021; 78:2828–2837 [View Article]
    [Google Scholar]
  17. Wang C, Li A, Yuan T, Bao G, Feng G et al. Rhizobium glycinendophyticum sp. nov., isolated from roots of Glycine max (Linn. Merr.). Antonie van Leeuwenhoek 2020; 113:147–154 [View Article]
    [Google Scholar]
  18. Ouyabe M, Tanaka N, Shiwa Y, Fujita N, Kikuno H et al. Rhizobium dioscoreae sp. nov., a plant growth-promoting bacterium isolated from yam (Dioscorea species). Int J Syst Evol Microbiol 2020; 70:5054–5062 [View Article]
    [Google Scholar]
  19. Zhao J, Zhao X, Wang J, Gong Q, Zhang X et al. Isolation, identification and characterization of endophytic bacterium Rhizobium oryzihabitans sp. nov., from rice root with biotechnological potential in agriculture. Microorganisms 2020; 8:608 [View Article]
    [Google Scholar]
  20. Vincent JM. A Manual for the Practical Study of the Root-Nodule Bacteria IBP Handbook 15 Black Well Scientific Publications, Oxford; 1970
    [Google Scholar]
  21. Carro L, Spröer C, Alonso P, Trujillo ME. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 2012; 35:73–80 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. A neighbour-joining method: a new method for reconstructing phylogenetics trees. Mol Biol Evol 1987; 44:406–425
    [Google Scholar]
  26. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998; 47:77–89 [View Article] [PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  28. Kuzmanović N, Fagorzi C, Mengoni A, Lassalle F, diCenzo GC. Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int J Syst Evol Microbiol 2022; 72:005243 [View Article]
    [Google Scholar]
  29. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article] [PubMed]
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  31. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article]
    [Google Scholar]
  32. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  33. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  34. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008; 36:W181–4 [View Article]
    [Google Scholar]
  35. Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G. Interactive microbial genome visualization with GView. Bioinformatics 2010; 26:3125–3126 [View Article] [PubMed]
    [Google Scholar]
  36. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:281–285
    [Google Scholar]
  37. Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform 2009; 37:211–215
    [Google Scholar]
  38. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  39. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprintse1900v1 2016; 4: [View Article]
    [Google Scholar]
  40. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Comm 2019; 10:1–10
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  43. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article]
    [Google Scholar]
  44. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article]
    [Google Scholar]
  45. Kuykendall LD, Young JM, Martínez-Romero E, Kerr A, Sawada H. Order Rhizobiales (new). Family Rhizobiaceae. Genus Rhizobium. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds The Alpha-, Beta-, Delta- and Epsilonproteobacteria, the Proteobacteria, Part C, Bergey’s Manual of Systematic Bacteriology, 2nd. edn vol 2 New York: Springer; 2005 pp 324–340
    [Google Scholar]
  46. Rahi P, Khairnar M, Hagir A, Narayan A, Jain KR et al. Peteryoungia gen. nov. with four new species combinations and description of Peteryoungia desertarenae sp. nov., and taxonomic revision of the genus Ciceribacter based on phylogenomics of Rhizobiaceae. Arch Microbiol 2021; 203:3591–3604 [View Article] [PubMed]
    [Google Scholar]
  47. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  48. Priefer UB, Kalinowski J, Rüger B, Heumann W, Pühler A. ISR1, a transposable DNA sequence resident in Rhizobium class IV strains, shows structural characteristics of classical insertion elements. Plasmid 1989; 21:120–128 [View Article] [PubMed]
    [Google Scholar]
  49. Casida Jr LE. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 1982; 32:339–345 [View Article]
    [Google Scholar]
  50. Peng G, Yuan Q, Li H, Zhang W, Tan Z. Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 2008; 58:2158–2163 [View Article] [PubMed]
    [Google Scholar]
  51. Amarger N, Macheret V, Laguerre G. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 1997; 47:996–1006 [View Article]
    [Google Scholar]
  52. Chen WX, Yan GH, Li JL. Numerical taxonomic study of fast-growing soybean Rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 1988; 38:392–397 [View Article]
    [Google Scholar]
  53. Sasser M. Technical Note 101: Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  54. Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 1974; 84:188–198 [View Article] [PubMed]
    [Google Scholar]
  55. Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena M-H, Igual JM et al. Pseudorhizobium pelagicum gen. nov., sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 2015; 38:293–299 [View Article]
    [Google Scholar]
  56. De Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G et al. Polyphasic taxonomy of Rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 1994; 44:715–733 [View Article]
    [Google Scholar]
  57. Yan H, Yan J, Sui XH, Wang ET, Chen WX et al. Ensifer glycinis sp. nov., a rhizobial species associated with species of the genus Glycine. Int J Syst Evol Microbiol 2016; 66:2910–2916 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005789
Loading
/content/journal/ijsem/10.1099/ijsem.0.005789
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error