Skip to content
1887

Abstract

Strain CY1518 was isolated from an anaerobic fermentation liquid of food waste treatment plant in Beijing, PR China, and characterized to assess its taxonomy. Cells of CY1518 were Gram-stain-negative, oxidase-negative, catalase-positive and ellipsoidal. Growth occurred at 20–42 °C (optimum, 37 °C), pH 6.0–10.0 (optimum, pH 8) and with 0–6.0 % (w/v) NaCl (optimum, 1.5%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CY1518 belongs to the genus , with the highest sequence similarity to W11-5 (95.97 %), followed by SW127 (95.08%). The similarity between strain CY1518 and other strains of was less than 95 %. The genomic DNA G+C content of strain CY1518 was 60.88 mol%. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between strain CY1518 and the closely related taxa W11-5 and SW127 were 77.61, 78.03 and 21.2 % and 74.15, 70.02 and 19.3%, respectively. The strain was able to use -serine, Tween 40 and some organic acid compounds for growth. The polar lipids comprised aminophospholipid, diphosphatidylglycerol, glycolipid, an unknown polar lipid, phosphatidylethanolamine, phosphatidylglycerol and phospholipid. The principal fatty acids (>5 %) were C cyclo 8 (36.3%), C (32.3%), C 3-OH (8.3%) and C (7.6%). Based on its phenotypic, genotypic and genomic characteristics, strain CY1518 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CY1518 (=GDMCC 1.2918=JCM 35120).

Funding
This study was supported by the:
  • University–Industry Collaborative Education Program (Award 202102083002)
    • Principle Award Recipient: GuozhuZhao
  • Fundamental Research Funds for the Central Universities at Beijing Forestry University (Award 2021ZY61)
    • Principle Award Recipient: GuozhuZhao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005764
2023-04-24
2025-04-24
Loading full text...

Full text loading...

References

  1. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 1998; 48 Pt 2:339–348 [View Article]
    [Google Scholar]
  2. Fernández-Martínez J, Pujalte MJ, García-Martínez J, Mata M, Garay E et al. Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 1 21 78T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 2003; 53:331–338 [View Article]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 2005; 55:1181–1186 [View Article] [PubMed]
    [Google Scholar]
  5. Kyoung Kwon K, Hye Oh J, Yang S-H, Seo H-S, Lee J-H. Alcanivorax gelatiniphagus sp. nov., a marine bacterium isolated from tidal flat sediments enriched with crude oil. Int J Syst Evol Microbiol 2015; 65:2204–2208 [View Article] [PubMed]
    [Google Scholar]
  6. Wu Y, Lai Q, Zhou Z, Qiao N, Liu C et al. Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. Int J Syst Evol Microbiol 2009; 59:1474–1479 [View Article] [PubMed]
    [Google Scholar]
  7. Lai Q, Wang J, Gu L, Zheng T, Shao Z. Alcanivorax marinus sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2013; 63:4428–4432 [View Article] [PubMed]
    [Google Scholar]
  8. Yang S, Li M, Lai Q, Li G, Shao Z. Alcanivorax mobilis sp. nov., a new hydrocarbon-degrading bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2018; 68:1639–1643 [View Article] [PubMed]
    [Google Scholar]
  9. Rahul K, Sasikala C, Tushar L, Debadrita R, Ramana CV. Alcanivorax xenomutans sp. nov., a hydrocarbonoclastic bacterium isolated from a shrimp cultivation pond. Int J Syst Evol Microbiol 2014; 64:3553–3558 [View Article] [PubMed]
    [Google Scholar]
  10. Rivas R, García-Fraile P, Peix A, Mateos PF, Martínez-Molina E et al. Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 2007; 57:1331–1335 [View Article] [PubMed]
    [Google Scholar]
  11. Zhu L, Wang Y, Ding Y, Luo K, Yang B et al. Alcanivorax limicola sp. nov., isolated from a soda alkali-saline soil. Arch Microbiol 2021; 204:106 [View Article] [PubMed]
    [Google Scholar]
  12. Zhang J, Liu Y-X, Guo X, Qin Y, Garrido-Oter R et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat Protoc 2021; 16:988–1012 [View Article] [PubMed]
    [Google Scholar]
  13. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  18. Lai Q, Wang L, Liu Y, Fu Y, Zhong H et al. Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 2011; 61:1370–1374 [View Article] [PubMed]
    [Google Scholar]
  19. Song L, Liu H, Cai S, Huang Y, Dai X et al. Alcanivorax indicus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2018; 68:3785–3789 [View Article] [PubMed]
    [Google Scholar]
  20. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 8:6–9
    [Google Scholar]
  21. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  22. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  23. Chan PP, Lowe TM. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods Mol Biol 2019; 1962:1–14 [View Article] [PubMed]
    [Google Scholar]
  24. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  27. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  28. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  30. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  31. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  33. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  34. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008; 36:W181–4 [View Article] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  36. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article]
    [Google Scholar]
  37. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  38. Mounier J, Hakil F, Branchu P, Naïtali M, Goulas P et al. AupA and AupB are outer and inner membrane proteins involved in alkane uptake in Marinobacter hydrocarbonoclasticus SP17. mBio 2018; 9:e00520-18 [View Article]
    [Google Scholar]
  39. Fatollahi P, Ghasemi M, Yazdian F, Sadeghi A. Ectoine production in bioreactor by Halomonas elongata DSM2581: using MWCNT and Fe-nanoparticle. Biotechnol Prog 2021; 37:e3073
    [Google Scholar]
  40. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA. eds Methods for General and Molecular Bacteriology vol 3rd Washington: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  41. Yuan J, Lai Q, Wang B, Sun F, Liu X et al. Oceanicola pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 2009; 59:1158–1161 [View Article] [PubMed]
    [Google Scholar]
  42. Jarvis BDW, Sivakumaran S, Tighe SW, Gillis M. Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant Soil 1996; 184:143–158 [View Article]
    [Google Scholar]
  43. Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE et al. Application of the Sherlock Mycobacteria Identification System using high-performance liquid chromatography in a clinical laboratory. J Clin Microbiol 2001; 39:964–970 [View Article] [PubMed]
    [Google Scholar]
  44. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  45. Miri M, Bambai B, Tabandeh F, Sadeghizadeh M, Kamali N. Production of a recombinant alkane hydroxylase (AlkB2) from Alcanivorax borkumensis. Biotechnol Lett 2010; 32:497–502 [View Article] [PubMed]
    [Google Scholar]
  46. Liu J, Ren Q, Zhang Y, Li Y, Tian X et al. Alcanivorax profundi sp. nov., isolated from deep seawater of the Mariana Trench. Int J Syst Evol Microbiol 2019; 69:371–376 [View Article] [PubMed]
    [Google Scholar]
  47. Lai Q, Zhou Z, Li G, Li G, Shao Z. Alcanivorax nanhaiticus sp. nov., isolated from deep sea sediment. Int J Syst Evol Microbiol 2016; 66:3651–3655 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005764
Loading
/content/journal/ijsem/10.1099/ijsem.0.005764
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error