Skip to content
1887

Abstract

A Gram-positive, facultatively anaerobic, agar-hydrolytic and rod-shaped bacterium with peritrichous flagellation, designated strain SCIV0701, was isolated from soya bean rhizosphere soil collected from Bazhong, Sichuan Province, PR China and characterized by using polyphasic taxonomy. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SCIV0701 belonged to the genus , and showed highest similarity to MX2-3 (97.59 %), M4BSY-1 (97.45 %) and NB5 (97.45 %). The average nucleotide identity values and DNA–DNA hybridization scores between strain SCIV0701 and MX2-3, M4BSY-1 and NB5 were lower than recommended thresholds of 95% and 70 %, respectively, for species delineation. Menaquinone-7 was the predominant respiratory quinone. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified phospholipids and one unidentified aminophospholipid. The major fatty acids were anteiso-C, C and iso-C. Physiological and biochemical features differentiated strain SCIV0701 from the closely related species. Based on the results of polyphasic taxonomic analysis, strain SCIV0701 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SCIV0701 (=GDMCC 1.2482=JCM 34672).

Funding
This study was supported by the:
  • Project by the Department of Science and Technology of Guangdong Province (Award 2019QN01N107)
    • Principle Award Recipient: qingpingwu
  • Key Laboratory of Guangdong Province (Award 2020B121201009)
    • Principle Award Recipient: qingpingwu
  • Guangzhou Science and Technology Program (Award 202201010461)
    • Principle Award Recipient: XinqiangXie
  • National Natural Science Foundation of China (Award 32202380)
    • Principle Award Recipient: HuiZhao
  • National Key R&D Program of China (Award 2021YFA0910200)
    • Principle Award Recipient: XinqiangXie
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005761
2023-04-05
2025-05-14
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1994; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article] [PubMed]
    [Google Scholar]
  3. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article] [PubMed]
    [Google Scholar]
  4. Dai X, Shi K, Wang X, Fan J, Wang R et al. Paenibacillus flagellatus sp. nov., isolated from selenium mineral soil. Int J Syst Evol Microbiol 2019; 69:183–188 [View Article] [PubMed]
    [Google Scholar]
  5. Trinh NH, Kim J. Paenibacillus piri sp. nov., isolated from urban soil. Int J Syst Evol Microbiol 2020; 70:656–661 [View Article] [PubMed]
    [Google Scholar]
  6. Baik KS, Choe HN, Park SC, Kim EM, Seong CN. Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2011; 61:2763–2768 [View Article] [PubMed]
    [Google Scholar]
  7. Yan X-R, Tuo L. Paenibacillus paeoniae sp. nov., a novel endophytic bacterium isolated from leaf of Paeonia lactiflora Pall. Int J Syst Evol Microbiol 2018; 68:3606–3610 [View Article] [PubMed]
    [Google Scholar]
  8. Yun JH, Lee JY, Kim PS, Jung MJ, Bae JW. Paenibacillus apis sp. nov. and Paenibacillus intestini sp. nov., isolated from the intestine of the honey bee Apis mellifera. Int J Syst Evol Microbiol 2017; 67:1918–1924 [View Article] [PubMed]
    [Google Scholar]
  9. Sáez-Nieto JA, Medina-Pascual MJ, Carrasco G, Garrido N, Fernandez-Torres MA et al. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect 2017; 19:19–27 [View Article] [PubMed]
    [Google Scholar]
  10. Khianngam S, Akaracharanya A, Tanasupawat S, Lee KC, Lee JS. Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria isolated from soil. Int J Syst Evol Microbiol 2009; 59:564–568 [View Article] [PubMed]
    [Google Scholar]
  11. Akaracharanya A, Lorliam W, Tanasupawat S, Lee KC, Lee JS. Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2009; 59:2680–2684 [View Article] [PubMed]
    [Google Scholar]
  12. Zhou Y, Lee Y-S, Park I-H, Sun Z, Yang T et al. Cyclodextrin glycosyltransferase encoded by a gene of Paenibacillus azotofixans YUPP-5 exhibited a new function to hydrolyze polysaccharides with β-1,4 linkage. Enzyme Microb Technol 2012; 50:151–157 [View Article] [PubMed]
    [Google Scholar]
  13. Zhao H, Pan J, Su Y, Gu Q, Zhang J et al. Flavobacterium soyae sp. nov., isolated from the rhizosphere of soya bean. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  14. Zhao H, Liu L, Yang L, Gu Q, Li Y et al. Pseudomonas protegens FJKB0103 Isolated from rhizosphere exhibits anti-methicillin-resistant Staphylococcus aureus activity. Microorganisms 2022; 10:315 [View Article]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  19. Zhao H, Liu YP, Zhang LQ. In silico and genetic analyses of cyclic lipopeptide synthetic gene clusters in Pseudomonas sp. 11K1. Front Microbiol 2019; 10: [View Article]
    [Google Scholar]
  20. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  21. Chi WJ, Chang YK, Hong SK. Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 2012; 94:917–930 [View Article]
    [Google Scholar]
  22. Kim J, Na SI, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article]
    [Google Scholar]
  23. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  27. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  28. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Journal of Microbiological Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  29. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  30. Minnikin DE, Abdolrahimzadeh H. Thin-layer chromatography of bacterial lipids on sodium acetate-impregnated silica gel. J Chromatogr 1971; 63:452–454 [View Article] [PubMed]
    [Google Scholar]
  31. Sasser M. Technical Note 101: Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI; 1990
    [Google Scholar]
  32. Sun J, Wang W, Ying Y, Zhu X, Liu J et al. Pseudomonas profundi sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2018; 68:1776–1780 [View Article] [PubMed]
    [Google Scholar]
  33. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774 [View Article] [PubMed]
    [Google Scholar]
  34. Jeffries CD, Holtmian DF, Guse DG. Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol 1957; 73:590–591 [View Article]
    [Google Scholar]
  35. Moon J, Kim J. Isolation of Paenibacillus pinesoli sp. nov. from forest soil in Gyeonggi-Do, Korea. J Microbiol 2014; 52:273–277 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005761
Loading
/content/journal/ijsem/10.1099/ijsem.0.005761
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error