Skip to content
1887

Abstract

Organisms classified as members of the genus belong to the best-known group of single-celled eukaryotes. Nevertheless, the phylogeny within the genus has been discussed and revisited in recent decades and remains partly unresolved. By applying an RNA sequence–structure approach, we attempt to increase accuracy and robustness of phylogenetic trees. For each individual 18S and internal transcribed spacer 2 (ITS2) sequence, a putative secondary structure was predicted through homology modelling. While searching for a structural template, we found, in contrast to the available literature, that the ITS2 molecule consists of three helices in members of the genus and four helices in members of the genus . Two sequencestructure neighbor-joining overall trees were reconstructed with (1) more than 400 taxa (ITS2) and (2) more than 200 taxa (18S). For smaller subsets, neighbor-joining, maximum-parsimony, and maximum-likelihood analyses were executed using sequence–structure information simultaneously. Based on a combined data set (ITS2+18S rDNA) a well-supported tree was reconstructed with bootstrap values over 50 in at least one of the applied analyses. Our results are in general agreement with those published in the available literature based on multi-gene analyses. Our study supports the simultaneous use of sequence–structure data to reconstruct accurate and robust phylogenetic trees.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005744
2023-04-06
2025-02-12
Loading full text...

Full text loading...

References

  1. Weimer M, Vďačný P, Wolf M. Paramecium: RNA sequence-structure phylogenetics. Figshare 2023 [View Article]
    [Google Scholar]
  2. Lynn DH. Chapter 15 Subphylum 2. Intramacronucleata: class 9. Oligohymenophorea – once a pivotal group, now a terminal radiation. In The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature, Third Edition. Springer Netherlands; 2008
    [Google Scholar]
  3. Sun M, Li Y, Cai X, Liu Y, Chen Y et al. Further insights into the phylogeny of peniculid ciliates (Ciliophora, Oligohymenophorea) based on multigene data. Mol Phylogenet Evol 2021; 154:107003 [View Article]
    [Google Scholar]
  4. Hausmann K, Hülsmann N, Radek R. Protistology, 3rd ed. Schweizerbart’sche Verlagsbuchhandlung; 2003
    [Google Scholar]
  5. Melekhin M, Yakovleva Y, Lebedeva N, Nekrasova I, Nikitashina L et al. Cryptic diversity in Paramecium multimicronucleatum revealed with a polyphasic approach. Microorganisms 2022; 10:974 [View Article]
    [Google Scholar]
  6. Fokin SI, Przyboś E, Chivilev SM, Beier CL, Horn M et al. Morphological and molecular investigations of Paramecium schewiakoffi sp. nov. (Ciliophora, Oligohymenophorea) and current status of distribution and taxonomy of Paramecium spp. Eur J Protistol 2004; 40:225–243 [View Article]
    [Google Scholar]
  7. Serra V, Fokin SI, Gammuto L, Nitla V, Castelli M et al. Phylogeny of Neobursaridium reshapes the systematics of Paramecium (Oligohymenophorea, Ciliophora). Zool Scr 2021; 50:241–268 [View Article]
    [Google Scholar]
  8. Kreutz M, Stoeck T, Foissner W. Morphological and molecular characterization of Paramecium (Viridoparamecium nov. subgen.) chlorelligerum Kahl (Ciliophora). J Eukaryot Microbiol 2012; 59:548–563 [View Article]
    [Google Scholar]
  9. Jankowski AW. A proposed taxonomy of the genus Paramecium Hill, 1752 (Ciliophora). Zool Ž 1969; 48:30–40
    [Google Scholar]
  10. Boscaro V, Fokin SI, Verni F, Petroni G. Survey of Paramecium duboscqui using three markers and assessment of the molecular variability in the genus Paramecium. Mol Phylogenet Evol 2012; 65:1004–1013 [View Article]
    [Google Scholar]
  11. Przyboś E, Tarcz S, Potekhin A, Rautian M, Prajer M. A two-locus molecular characterization of Paramecium calkinsi. Protist 2012; 163:263–273 [View Article] [PubMed]
    [Google Scholar]
  12. Sawka-Gądek N, Potekhin A, Singh DP, Grevtseva I, Arnaiz O et al. Evolutionary plasticity of mating-type determination mechanisms in Paramecium aurelia sibling species. Genome Biol Evol 2021; 13:evaa258 [View Article]
    [Google Scholar]
  13. Greczek-Stachura M, Rautian M, Tarcz S. Paramecium bursaria—a complex of five cryptic species: mitochondrial DNA COI haplotype variation and biogeographic distribution. Diversity 2021; 13:589 [View Article]
    [Google Scholar]
  14. Tasneem F, Shakoori FR, Ilyas M, Shahzad N, Potekhin A et al. Genetic diversity of Paramecium species on the basis of multiple loci analysis and ITS secondary structure models. J Cell Biochem 2019; 121:3837–3853 [View Article] [PubMed]
    [Google Scholar]
  15. Potekhin A, Mayén-Estrada R. Paramecium diversity and a new member of the Paramecium aurelia species complex described from Mexico. Diversity 2020; 12:197 [View Article]
    [Google Scholar]
  16. Krenek S, Berendonk TU, Fokin SI. New Paramecium (Ciliophora, Oligohymenophorea) congeners shape our view on its biodiversity. Org Divers Evol 2015; 15:215–233 [View Article]
    [Google Scholar]
  17. Yi Z, Strüder-Kypke M, Hu X, Lin X, Song W. Sampling strategies for improving tree accuracy and phylogenetic analyses: a case study in ciliate protists, with notes on the genus Paramecium. Mol Phylogenet Evol 2014; 71:142–148 [View Article] [PubMed]
    [Google Scholar]
  18. De Souza BA, Dias RJP, Senra MVX. Intrageneric evolutionary timing and hidden genetic diversity of Paramecium lineages (Ciliophora:Oligohymenophorea). Syst Biodivers 2020; 18:662–674 [View Article]
    [Google Scholar]
  19. Hoshina R, Hayashi S, Imamura N. Intraspecific genetic divergence of Paramecium bursaria and reconstruction of the paramecian phylogenetic tree. Acta Protozool 2006; 45:377–386
    [Google Scholar]
  20. Keller A, Förster F, Müller T, Dandekar T, Schultz J et al. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol Direct 2010; 5:4 [View Article]
    [Google Scholar]
  21. Wolf M, Koetschan C, Müller T. ITS2, 18S, 16S or any other RNA – simply aligning sequences and their individual secondary structures simultaneously by an automatic approach. Gene 2014; 546:145–149 [View Article]
    [Google Scholar]
  22. Plieger T, Wolf M. 18S and ITS2 rDNA sequence–structure phylogeny of Prototheca (Chlorophyta, Trebouxiophyceae). Biologia 2022; 77:569–582 [View Article]
    [Google Scholar]
  23. Heeg JS, Wolf M. ITS2 and 18S rDNA sequence–structure phylogeny of Chlorella and allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae). Plant Gene 2015; 4:20–28 [View Article]
    [Google Scholar]
  24. Kryvenda A, Rybalka N, Wolf M, Friedl T. Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence–structure data: Eustigmatos and Vischeria. Eur J Phycol 2018; 53:471–491 [View Article]
    [Google Scholar]
  25. Hegewald E, Wolf M, Keller A, Friedl T, Krienitz L. ITS2 sequence–structure phylogeny in the Scenedesmaceae with special reference to Coelastrum (Chlorophyta, Chlorophyceae), including the new genera Comasiella and Pectinodesmus. Phycologia 2010; 49:325–335 [View Article]
    [Google Scholar]
  26. Borges AR, Engstler M, Wolf M. 18S rRNA gene sequence–structure phylogeny of the Trypanosomatida (Kinetoplastea, Euglenozoa) with special reference to Trypanosoma. Eur J Protistol 2021; 81:125824 [View Article]
    [Google Scholar]
  27. Czech V, Wolf M. RNA consensus structures for inferring green algal phylogeny: a three-taxon analysis for Golenkinia/Jenufa, Sphaeropleales and Volvocales (Chlorophyta, Chlorophyceae). Fottea 2020; 20:68–74 [View Article]
    [Google Scholar]
  28. Markert SM, Müller T, Koetschan C, Friedl T, Wolf M. Y’Scenedesmus (Chlorophyta, Chlorophyceae): the internal transcribed spacer 2 rRNA secondary structure re-revisited. Plant Biol 2012; 14:987–996 [View Article]
    [Google Scholar]
  29. Lim HC, Teng ST, Lim PT, Wolf M, Leaw CP. 18S rDNA phylogeny of Pseudo-nitzschia (Bacillariophyceae) inferred from sequence-structure information. Phycologia 2016; 55:134–146 [View Article]
    [Google Scholar]
  30. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2009; 37:D26–31 [View Article]
    [Google Scholar]
  31. Keller A, Schleicher T, Schultz J, Müller T, Dandekar T et al. 5.8S–28S rRNA interaction and HMM-based ITS2 annotation. Gene 2009; 430:50–57 [View Article]
    [Google Scholar]
  32. Ankenbrand MJ, Keller A, Wolf M, Schultz J, Förster F. ITS2 database V: twice as much. Mol Biol Evol 2015; 32:3030–3032 [View Article]
    [Google Scholar]
  33. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002; 3:2 [View Article]
    [Google Scholar]
  34. Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11:129 [View Article]
    [Google Scholar]
  35. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  36. Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M. 4SALE – A tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 2006; 7:498 [View Article]
    [Google Scholar]
  37. Seibel PN, Müller T, Dandekar T, Wolf M. Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res Notes 2008; 1:91 [View Article]
    [Google Scholar]
  38. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  39. Jukes TH, Cantor CR. Evolution of protein molecules. In Mammalian Protein Metabolism. Elsevier 1969 pp 21–132
    [Google Scholar]
  40. Friedrich J, Dandekar T, Wolf M, Müller T. ProfDist: a tool for the construction of large phylogenetic trees based on profile distances. Bioinformatics 2005; 21:2108–2109 [View Article] [PubMed]
    [Google Scholar]
  41. Wolf M, Ruderisch B, Dandekar T, Schultz J, Müller T. ProfDistS: (profile-) distance based phylogeny on sequence–structure alignments. Bioinformatics 2008; 24:2401–2402 [View Article]
    [Google Scholar]
  42. Lanave C, Preparata G, Saccone C, Serio G. A new method for calculating evolutionary substitution rates. J Mol Evol 1984; 20:86–93 [View Article] [PubMed]
    [Google Scholar]
  43. Camin JH, Sokal RR. Evolutionary trees from DNA sequences: a maximum likelihood approach. Evolution 1965; 19:311–326 [View Article]
    [Google Scholar]
  44. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  45. Swofford D. Paup*. In Phylogenetic Analysis Using Parsimony (*and Other Methods) Sunderland, Massachusetts: Sinauer; 2002 [View Article]
    [Google Scholar]
  46. R Core R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria: n.d https://r-project.org/
  47. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap.. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  48. Hepperle D. Align Ver.07/04©. multisequence alignment-editor and preparation/manipulation of phylogenetic datasets. Win32-Version; 2004 https://sequentix.de/
  49. Schultz J, Maisel S, Gerlach D, Müller T, Wolf M. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 2005; 11:361–364 [View Article] [PubMed]
    [Google Scholar]
  50. Coleman AW. Paramecium aurelia revisited. J Eukaryot Microbiol 2005; 52:68–77 [View Article] [PubMed]
    [Google Scholar]
  51. Rataj M, Vďačný P. Putative ITS2 secondary structure model and multi‐gene phylogenies of tetrahymenids (Ciliophora, Hymenostomatia) parasitizing planarians and crayfish worms. Zool Scr 2022; 51:246–265 [View Article]
    [Google Scholar]
  52. Zhao Y, Gentekaki E, Yi Z, Lin X. Genetic differentiation of the mitochondrial cytochrome oxidase c subunit I gene in genus Paramecium (Protista, Ciliophora). PLoS ONE 2013; 8:e77044 [View Article]
    [Google Scholar]
  53. Strüder-Kypke MC, Wright A-D, Fokin SI, Lynn DH. Phylogenetic relationships of the genus Paramecium inferred from small subunit rRNA gene sequences. Mol Phylogenet Evol 2000; 14:122–130 [View Article] [PubMed]
    [Google Scholar]
  54. Buchheim MA, Sutherland DM, Schleicher T, Förster F, Wolf M. Phylogeny of Oedogoniales, Chaetophorales and Chaetopeltidales (Chlorophyceae): inferences from sequence-structure analysis of ITS2. Ann Bot 2012; 109:109–116 [View Article] [PubMed]
    [Google Scholar]
  55. Darty K, Denise A, Ponty Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009; 25:1974–1975 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005744
Loading
/content/journal/ijsem/10.1099/ijsem.0.005744
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error