1887

Abstract

Six strains, KI11_D11, KI4_B1, KI11_C11, KI16_H9, KI4_A6 and KI3_B9, were isolated from insects and flowers on Kangaroo Island, South Australia. On the basis of 16S rRNA gene phylogeny, strains KI11_D11, KI4_B1, KI11_C11, KI16_H9, KI4_A6 were found to be closely related to Ru20-1. Due to the lack of a whole genome sequence for this species, whole genome sequencing of Ru20-1 was undertaken. KI3_B9 was found to be closely related to F214-1. Utilizing core gene phylogenetics and whole genome analyses, such as determination of AAI, ANI and dDDH, we propose that these six isolates represent five novel species with the names (KI11_D11= LMG 32130 = NBRC 114988), (KI11_C11 = LMG 32129 = NBRC 114987), (KI16_H9= LMG 32131 = NBRC 114989) (KI4_A6 = LMG 32127 = NBRC 114985) and (KI3_B9 = LMG 32124 = NBRC 114983). Chemotaxonomic analyses detected no fructophilic characters for these strains of member of the genus . KI3_B9 was found to be obligately fructophilic, similarly to its phylogenetic neighbours in the genus . This study represents the first isolation, to our knowledge, of novel species in the family from the Australian wild.

Funding
This study was supported by the:
  • BioLaffort (Award UA205016)
    • Principle Award Recipient: ScottAllen Oliphant
  • University of Adelaide International Scholarship (Award N/A)
    • Principle Award Recipient: ScottAllen Oliphant
  • The Australian Research Council Training Centre for Innovative Wine Production (Award IC70100008)
    • Principle Award Recipient: VladimirJiranek
  • The Australian Research Council Training Centre for Innovative Wine Production (Award IC70100008)
    • Principle Award Recipient: KristaM Sumby
  • Wine Australia (Award UA 1803_2.1)
    • Principle Award Recipient: VladimirJiranek
  • Wine Australia (Award UA 1803_2.1)
    • Principle Award Recipient: JenniferMargaret Gardner
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005730
2023-02-16
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/2/ijsem005730.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005730&mimeType=html&fmt=ahah

References

  1. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017; 41:S27–S48 [View Article] [PubMed]
    [Google Scholar]
  2. Endo A, Futagawa-Endo Y, Dicks LMT. Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 2009; 32:593–600 [View Article] [PubMed]
    [Google Scholar]
  3. Endo A, Futagawa-Endo Y, Sakamoto M, Kitahara M, Dicks LMT. Lactobacillus florum sp. nov., a fructophilic species isolated from flowers. Int J Syst Evol Microbiol 2010; 60:2478–2482 [View Article]
    [Google Scholar]
  4. Endo A, Irisawa T, Futagawa-Endo Y, Sonomoto K, Itoh K et al. Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. Int J Syst Evol Microbiol 2011; 61:898–902 [View Article] [PubMed]
    [Google Scholar]
  5. Kawasaki S, Kurosawa K, Miyazaki M, Sakamoto M, Ohkuma M et al. Lactobacillus ozensis sp. nov., isolated from mountain flowers. Int J Syst Evol Microbiol 2011; 61:2435–2438 [View Article] [PubMed]
    [Google Scholar]
  6. Kawasaki S, Kurosawa K, Miyazaki M, Yagi C, Kitajima Y et al. Lactobacillus floricola sp. nov., lactic acid bacteria isolated from mountain flowers. Int J Syst Evol Microbiol 2011; 61:1356–1359 [View Article] [PubMed]
    [Google Scholar]
  7. McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA et al. Flowers and wild megachilid bees share microbes. Microb Ecol 2017; 73:188–200 [View Article]
    [Google Scholar]
  8. McFrederick QS, Vuong HQ, Rothman JA. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers. Int J Syst Evol Microbiol 2018; 68:1879–1884 [View Article] [PubMed]
    [Google Scholar]
  9. Ruiz Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L et al. Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in Northern Argentina. Front Microbiol 2019; 10:1091 [View Article]
    [Google Scholar]
  10. Techo S, Miyashita M, Shibata C, Tanaka N, Wisetkhan P et al. Lactobacillus ixorae sp. nov., isolated from a flower (West-Indian jasmine). Int J Syst Evol Microbiol 2016; 66:5500–5505 [View Article]
    [Google Scholar]
  11. McFrederick QS, Cannone JJ, Gutell RR, Kellner K, Plowes RM et al. Specificity between lactobacilli and hymenopteran hosts is the exception rather than the rule. Appl Environ Microbiol 2013; 79:1803–1812 [View Article]
    [Google Scholar]
  12. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2011; 20:619–628 [View Article] [PubMed]
    [Google Scholar]
  13. Kwong WK, Medina LA, Koch H, Sing K-W, Soh EJY et al. Dynamic microbiome evolution in social bees. Sci Adv 2017; 3:e1600513 [View Article]
    [Google Scholar]
  14. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article] [PubMed]
    [Google Scholar]
  15. Lamei S, Hu YOO, Olofsson TC, Andersson AF, Forsgren E et al. Improvement of identification methods for honeybee specific lactic acid bacteria; future approaches. PLoS ONE 2017; 12:e0174614 [View Article]
    [Google Scholar]
  16. Olofsson TC, Alsterfjord M, Nilson B, Butler È, Vásquez A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 2014; 64:3109–3119 [View Article]
    [Google Scholar]
  17. Olofsson TC, Vásquez A. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 2008; 57:356–363 [View Article]
    [Google Scholar]
  18. He H, Chen Y, Zhang Y, Wei C. Bacteria associated with gut lumen of Camponotus japonicus Mayr. Environ Entomol 2011; 40:1405–1409 [View Article] [PubMed]
    [Google Scholar]
  19. Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci U S A 2011; 108:19288–19292 [View Article]
    [Google Scholar]
  20. Endo A, Salminen S. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 2013; 36:444–448 [View Article] [PubMed]
    [Google Scholar]
  21. Endo A, Maeno S, Tanizawa Y, Kneifel W, Arita M et al. Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes. Appl Environ Microbiol 2018; 84:19 [View Article]
    [Google Scholar]
  22. Lin S-T, Guu J-R, Wang H-M, Tamura T, Mori K et al. Fructobacillus papyriferae sp. nov., Fructobacillus papyrifericola sp. nov., Fructobacillus broussonetiae sp. nov. and Fructobacillus parabroussonetiae sp. nov., isolated from paper mulberry in Taiwan. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  23. Maeno S, Nishimura H, Tanizawa Y, Dicks L, Arita M et al. Unique niche-specific adaptation of fructophilic lactic acid bacteria and proposal of three Apilactobacillus species as novel members of the group. BMC Microbiol 2021; 21:41 [View Article]
    [Google Scholar]
  24. Endo A, Irisawa T, Futagawa-Endo Y, Takano K, du Toit M et al. Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. Int J Syst Evol Microbiol 2012; 62:500–504 [View Article] [PubMed]
    [Google Scholar]
  25. Anderson KE, Rodrigues PAP, Mott BM, Maes P, Corby-Harris V. Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microb Ecol 2016; 71:1008–1019 [View Article]
    [Google Scholar]
  26. Corby-Harris V, Maes P, Anderson KE. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 2014; 9:e95056 [View Article]
    [Google Scholar]
  27. Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L et al. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 2013; 8:e83125 [View Article]
    [Google Scholar]
  28. Guerin GR, Biffin E, Baruch Z, Lowe AJ. Identifying centres of plant biodiversity in South Australia. PLoS One 2016; 11:e0144779 [View Article]
    [Google Scholar]
  29. Kantvilas G. An annotated catalogue of the lichens of Kangaroo Island, South Australia. Swainsona 2019; 32:1–98
    [Google Scholar]
  30. Glatz RV. Curious case of the Kangaroo Island honeybee Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) sanctuary. Austral Entomology 2015; 54:117–126 [View Article]
    [Google Scholar]
  31. Galkiewicz JP, Kellogg CA. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl Environ Microbiol 2008; 74:7828–7831 [View Article]
    [Google Scholar]
  32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  33. Oliphant SA, Watson-Haigh NS, Sumby KM, Gardner J, Groom S et al. Apilactobacillus apisilvae sp. nov., Nicolia spurrieriana gen. nov. sp. nov., Bombilactobacillus folatiphilus sp. nov. and Bombilactobacillus thymidiniphilus sp. nov., four new lactic acid bacterial isolates from stingless bees Tetragonula carbonaria and Austroplebeia australis. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  36. Charif D, Lobry JR. SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. In Biological and Medical Physics, Biomedical Engineering Berlin, Heidelberg: Springer Berlin Heidelberg; pp 207–232
    [Google Scholar]
  37. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  38. Henneberg W. Zur kenntnis der milchsäurebakterien der brennereimaische, der milch, und des bieres. Wochenschr Brauwiss 1901; 18:381–384
    [Google Scholar]
  39. Back W, Bohak I, Ehrmann M, Ludwig W, Schleifer KH. Revival of the species Lactobacillus lindneri and the design of a species specific oligonucleotide probe. Systematic and Applied Microbiology 1996; 19:322–325 [View Article]
    [Google Scholar]
  40. Hoang V-A, Kim Y-J, Nguyen N-L, Kim S-K, Yang D-C. Lactobacillus vespulae sp. nov., isolated from gut of a queen wasp (Vespula vulgaris). Int J Syst Evol Microbiol 2015; 65:3326–3332 [View Article]
    [Google Scholar]
  41. Chambel L, Chelo IM, Zé-Zé L, Pedro LG, Santos MA et al. Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int J Syst Evol Microbiol 2006; 56:1375–1381 [View Article] [PubMed]
    [Google Scholar]
  42. Antunes A, Rainey FA, Nobre MF, Schumann P, Ferreira AM et al. Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int J Syst Evol Microbiol 2002; 52:647–655 [View Article] [PubMed]
    [Google Scholar]
  43. Endo A, Okada S. Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int J Syst Evol Microbiol 2008; 58:2195–2205 [View Article]
    [Google Scholar]
  44. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32:2847–2849 [View Article] [PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  46. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  47. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  48. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  49. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  50. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  51. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  52. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  53. Li F, Cheng CC, Zheng J, Liu J, Quevedo RM et al. Limosilactobacillus balticus sp. nov., Limosilactobacillus agrestis sp. nov., Limosilactobacillus albertensis sp. nov., Limosilactobacillus rudii sp. nov. and Limosilactobacillus fastidiosus sp. nov., five novel Limosilactobacillus species isolated from the vertebrate gastrointestinal tract, and proposal of six subspecies of Limosilactobacillus reuteri adapted to the gastrointestinal tract of specific vertebrate hosts. Int J Syst Evol Microbiol 2021; 71:004644 [View Article]
    [Google Scholar]
  54. Sumby KM, Niimi J, Betteridge AL, Jiranek V. Ethanol‐tolerant lactic acid bacteria strains as a basis for efficient malolactic fermentation in wine: evaluation of experimentally evolved lactic acid bacteria and winery isolates. Australian Journal of Grape and Wine Research 2019; 25:404–413 [View Article]
    [Google Scholar]
  55. Schumann P. Peptidoglycan structure. Methods in Microbiology 2011; 38:101–129 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005730
Loading
/content/journal/ijsem/10.1099/ijsem.0.005730
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error