1887

Abstract

The genus is phenotypically and genotypically diverse, with many species phylogenetically located outside . One such group consists of the species and (formally clostridial rRNA cluster XVIII) [ 1 ]. Sequencing of the 16S rRNA and, more recently, the results of genomic analyses have demonstrated that these species represent a coherent cluster separated from other closely related genera located in the family within the order [ 2 ]. In addition to phenotypic, phylogenetic and genomic comparisons, chemotaxonomic features were consistent between all four species, the predominant fatty acids were C and Cω9, while glucose and ribose were the whole cell sugars present in the cell walls. Furthermore, he results of peptidoglycan analysis indicated that -2,6-diaminopimelic acid was present as the diagnostic diamino acid in all four species. Biochemical profiles were also concordant with them being closely related species. Therefore, on the basis of phylogenetic, genomic, phenotypic and chemotaxonomic information, a novel genus, gen. nov., is proposed. It is suggested that and be transferred to this genus as comb. nov., comb. nov., comb. nov. and comb. nov. The type species of the genus is CCUG 24038 (=ATCC 25582=DSM 1402).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005694
2023-01-27
2024-11-12
Loading full text...

Full text loading...

References

  1. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article] [PubMed]
    [Google Scholar]
  2. Stackebrandt E, Kramer I, Swiderski J, Hippe H. Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immunol Med Microbiol 1999; 24:253–258 [View Article]
    [Google Scholar]
  3. Lawson PA, Llop-Perez P, Hutson RA, Hippe H, Collins MD. Towards a phylogeny of the clostridia based on 16S rRNA sequences. FEMS Microbiol Lett 1993; 113:87–92 [View Article] [PubMed]
    [Google Scholar]
  4. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol 2016; 66:1009–1016 [View Article]
    [Google Scholar]
  5. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  6. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 2013; 15:2631–2641 [View Article] [PubMed]
    [Google Scholar]
  7. Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G et al. Revisiting the evolution and taxonomy of clostridia, a phylogenomic update. Genome Biol Evol 2019; 11:2035–2044 [View Article]
    [Google Scholar]
  8. Gerritsen J, Fuentes S, Grievink W, van Niftrik L, Tindall BJ et al. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int J Syst Evol Microbiol 2014; 64:1600–1616 [View Article]
    [Google Scholar]
  9. Strömpl C, Tindall BJ, Lünsdorf H, Wong TY, Moore ER et al. Reclassification of Clostridium quercicolum as Dendrosporobacter quercicolus gen. nov., comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:101–106 [View Article] [PubMed]
    [Google Scholar]
  10. Moon CD, Pacheco DM, Kelly WJ, Leahy SC, Li D et al. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int J Syst Evol Microbiol 2008; 58:2041–2045 [View Article] [PubMed]
    [Google Scholar]
  11. Haas KN, Blanchard JL. Reclassification of the Clostridium clostridioforme and Clostridium sphenoides clades as Enterocloster gen. nov. and Lacrimispora gen. nov., including reclassification of 15 taxa. Int J Syst Evol Micr 2020; 70:23–34
    [Google Scholar]
  12. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2008; 58:1896–1902 [View Article]
    [Google Scholar]
  13. Clavel T, Lippman R, Gavini F, Doré J, Blaut M. Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 2007; 30:16–26 [View Article]
    [Google Scholar]
  14. Zakham F, Pillonel T, Brunel A-S, Zambelli P-Y, Greub G et al. Molecular diagnosis and enrichment culture identified a septic pseudoarthrosis due to an infection with Erysipelatoclostridium ramosum. Int J Infect Dis 2019; 81:167–169 [View Article] [PubMed]
    [Google Scholar]
  15. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  16. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article]
    [Google Scholar]
  17. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes. Int J Syst Evol Micr 2015; 69:S1–S111
    [Google Scholar]
  18. Verbarg S, Göker M, Scheuner C, Schumann P, Stackebrandt E. The Prokaryotes, Firmicutes and Tenericutes Berlin, Heidelberg: Springer; 2014 pp 79–105 [View Article]
    [Google Scholar]
  19. Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2020; 70:4844–4847 [View Article] [PubMed]
    [Google Scholar]
  20. Hutson RA, Thompson DE, Lawson PA, Schocken-Itturino RP, Böttger EC et al. Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of the Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences. Antonie van Leeuwenhoek 1993; 64:273–283 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  23. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406425
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  29. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  30. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016; 44:D733–45 [View Article] [PubMed]
    [Google Scholar]
  31. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  32. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2019; 362251–2252 [View Article]
    [Google Scholar]
  33. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article]
    [Google Scholar]
  34. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  35. Shih Y-K, Parthasarathy S. Identifying functional modules in interaction networks through overlapping Markov clustering. Bioinformatics 2012; 28:i473–i479 [View Article] [PubMed]
    [Google Scholar]
  36. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  37. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article] [PubMed]
    [Google Scholar]
  38. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  39. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article]
    [Google Scholar]
  40. Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2016; 40:133–159 [View Article] [PubMed]
    [Google Scholar]
  41. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45:D353–D361 [View Article]
    [Google Scholar]
  42. Lawson PA, Sankaranarayanan K, Patel NB, Busse H-J. In-silico chemotaxonomy: a tool for 21st century microbial systematics. In Microbial Systematics and Metagenomics BISMiS 2016 Abstracts Book BISMiS; 2016 p 27
    [Google Scholar]
  43. Patel NB, Sankaranarayanan K, Lawson PA. Development of genomic tools to predict polar lipid production. In Microbial Systematics and Metagenomics BISMiS2016 Abstracts Book 2016 p 41
    [Google Scholar]
  44. Lawson PA, Patel NB. The Strength of Chemotaxonomy. In Bridge P, Smith D, Stackebrandt E. eds Trends in the Systematics of Bacteria and Fungi CABI Publishing; 2021 pp 141–167
    [Google Scholar]
  45. Doyle DA, Smith PR, Lawson PA, Tanner RS. Clostridium muellerianum sp. nov., a carbon monoxide-oxidizing acetogen isolated from old hay. Int J Syst Evol Micr 2022; 72: [View Article]
    [Google Scholar]
  46. Fotedar R, Caldwell ME, Sankaranarayanan K, Al-Zeyara A, Al-Malki A et al. Ningiella ruwaisensis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from marine water of the Arabian Gulf. Int J Syst Evol Microbiol 2020; 70:4130–4138 [View Article] [PubMed]
    [Google Scholar]
  47. Fotedar R, Sankaranarayanan K, Caldwell ME, Zeyara A, Al Malki A et al. Reclassification of Facklamia ignava, Facklamia sourekii and Facklamia tabacinasalis as Falseniella ignava gen. nov., comb. nov., Hutsoniella sourekii gen. nov., comb. nov., and Ruoffia tabacinasalis gen. nov., comb. nov., and description of Ruoffia halotolerans sp. nov., isolated from hypersaline Inland Sea of Qatar. Antonie Van Leeuwenhoek 2021; 114:1181–1193 [View Article]
    [Google Scholar]
  48. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  49. Whitman WB. The need for change embracing the genome. In Rainey F, Oren A. eds Taxonomy of Prokaryotes Academic Press; pp 1–12
    [Google Scholar]
  50. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  51. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  52. Vandamme P, Sutcliffe I. Out with the old and in with the new: time to rethink twentieth century chemotaxonomic practices in bacterial taxonomy. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  53. Schumann P. Peptidoglycan Structure. Rainey F, Oren A. Taxonomy of Prokyotes Academic Press; 2011101–129
    [Google Scholar]
  54. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Technical Note #101; 2001 http://www.midiinc.com/pages/mis_literature
  55. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  56. Kunitsky C, Osterhout G, Sasser M. Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the Midi Sherlock® microbial identification system. In: Encyclopedia Rapid Microbiol Methods 2006:1–19
    [Google Scholar]
  57. Morita H, Shiratori C, Murakami M, Takami H, Toh H et al. Sharpea azabuensis gen. nov., sp. nov., a Gram-positive, strictly anaerobic bacterium isolated from the faeces of thoroughbred horses. Int J Syst Evol Micr 2008; 58:2682–2686 [View Article]
    [Google Scholar]
  58. Rainey F, Hollen BJ, Small A, Genus I. Genus I. Clostridium. In Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W et al. eds Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009 pp 738–828
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005694
Loading
/content/journal/ijsem/10.1099/ijsem.0.005694
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error