1887

Abstract

A novel sulphur-reducing bacterium was isolated from a pyrite-forming enrichment culture inoculated with sewage sludge from a wastewater treatment plant. Based on phylogenetic data, strain J.5.4.2-T.3.5.2 could be affiliated with the phylum . Among type strains of species with validly published names, the highest 16S rRNA gene sequence identity value was found with ILE-2 (89.2 %). Cells of the new isolate were Gram-negative, non-spore-forming, straight to slightly curved rods with tapered ends. Motility was conferred by lateral flagella. True branching of cells was frequently observed. The strain had a strictly anaerobic, asaccharolytic, fermentative metabolism with peptides and amino acids as preferred substrates. Sulphur was required as an external electron acceptor during fermentative growth and was reduced to sulphide, whereas it was dispensable during syntrophic growth with a species. Major fermentation products were acetate and propionate. The cellular fatty acid composition was dominated by unsaturated and branched fatty acids, especially iso-C. Its major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and distinct unidentified polar lipids. Respiratory lipoquinones were not detected. Based on the obtained data we propose the novel species and genus , represented by the type strain J.5.4.2-T.3.5.2 (=DSM 107166=NBRC 114655) and the novel family fam. nov. to accommodate the genus . In addition, we suggest reclassifying certain members of the into new families to comply with current standards for the classification of higher taxa. Based on phylogenomic data, the novel families e fam. nov., fam. nov., fam. nov., fam. nov. and fam. nov. are proposed.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award PE2147/3-1)
    • Principle Award Recipient: MichaelPester
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005691
2023-02-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/2/ijsem005691.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005691&mimeType=html&fmt=ahah

References

  1. Jumas-Bilak E, Roudière L, Marchandin H. Description of “Synergistetes” phyl. nov. and emended description of the phylum “Deferribacteres” and of the family Syntrophomonadaceae, phylum “Firmicutes”. Int J Syst Evol Microbiol 2009; 59:1028–1035 [View Article]
    [Google Scholar]
  2. Thiel J, Byrne JM, Kappler A, Schink B, Pester M. Pyrite formation from FeS and H2S is mediated through microbial redox activity. Proc Natl Acad Sci U S A 2019; 116:6897–6902 [View Article] [PubMed]
    [Google Scholar]
  3. Wu J-H, Liu W-T, Tseng I-C, Cheng S-S. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology 2001; 147:373–382 [View Article]
    [Google Scholar]
  4. Liu Y-F, Liu Z-L, Ye Y-L, Zhou L, Liu J-F et al. Aminirod propionatiphilus gen. nov., sp. nov., an isolated secondary fermenter in methanogenic hydrocarbon-degrading communities. Int Biodeterior Biodegradation 2021; 165:105323
    [Google Scholar]
  5. Yang M, Li J, Lv X-M, Dai L-R, Wu K-J et al. Thermosynergistes pyruvativorans gen. nov., sp. nov., an anaerobic, pyruvate-degrading bacterium from Shengli oilfield, and proposal of Thermosynergistaceae fam. nov. in the phylum Synergistetes. Int J Syst Evol Microbiol 2021; 71:1–8 [View Article]
    [Google Scholar]
  6. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–9 [View Article]
    [Google Scholar]
  7. Huang YY, Martínez-Del Campo A, Balskus EP. Anaerobic 4-hydroxyproline utilization: discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity. Gut Microbes 2018; 9:437–451 [View Article] [PubMed]
    [Google Scholar]
  8. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article]
    [Google Scholar]
  9. Spring S, Sorokin DY, Verbarg S, Rohde M, Woyke T et al. Sulfate-reducing bacteria that produce exopolymers thrive in the calcifying zone of a hypersaline cyanobacterial mat. Front Microbiol 2019; 10:862 [View Article]
    [Google Scholar]
  10. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  11. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  12. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–5 [View Article]
    [Google Scholar]
  13. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  14. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  15. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  17. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  18. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article]
    [Google Scholar]
  19. Ben Hania W, Joseph M, Schumann P, Bunk B, Fiebig A et al. Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated form a hypersaline microbial mat. Stand Genomic Sci 2015; 10:7 [View Article]
    [Google Scholar]
  20. Ben Hania W, Joseph M, Bunk B, Spröer C, Klenk H-P et al. Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol 2017; 19:1134–1148 [View Article] [PubMed]
    [Google Scholar]
  21. Nanninga HJ, Drent WJ, Gottschal JC. Fermentation of glutamate by Selenomonas acidaminophila sp. nov. Arch Microbiol 1987; 147:152–157
    [Google Scholar]
  22. Sasser M. Technical Note 101: Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI Inc; 1990 pp 1–7
    [Google Scholar]
  23. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71:1 [View Article]
    [Google Scholar]
  24. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of 587 comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Microbiology, 3rd edn. Washington, DC: American Society of Microbiology; 2007 pp 330–393 [View Article]
    [Google Scholar]
  25. Schumann P, Kalensee F, Cao J, Criscuolo A, Clermont D et al. Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. Int J Syst Evol Microbiol 2021; 71:004769 [View Article]
    [Google Scholar]
  26. Simonte FM, Dötsch A, Galego L, Arraiano C, Gescher J. Investigation on the anaerobic propionate degradation by Escherichia coli K12. Mol Microbiol 2017; 103:55–66 [View Article] [PubMed]
    [Google Scholar]
  27. Stams AJM, Dijkema C, Plugge CM, Lens P. Contribution of 13C-NMR spectroscopy to the elucidation of pathways of propionate formation and degradation in methanogenic environments. Biodegradation 1998; 9:463–473 [View Article]
    [Google Scholar]
  28. Thiel J, Spring S, Tindall BJ, Spröer C, Bunk B et al. Desulfolutivibrio sulfoxidireducens gen. nov., sp. nov., isolated from a pyrite-forming enrichment culture and reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov. Syst Appl Microbiol 2020; 43:126105 [View Article] [PubMed]
    [Google Scholar]
  29. Petrus AK, Swithers KS, Ranjit C, Wu S, Brewer HM et al. Genes for the major structural components of Thermotogales species’ togas revealed by proteomic and evolutionary analyses of OmpA and OmpB homologs. PLoS One 2012; 7:e40236 [View Article]
    [Google Scholar]
  30. Billaudeau C, Chastanet A, Yao Z, Cornilleau C, Mirouze N et al. Contrasting mechanisms of growth in two model rod-shaped bacteria. Nat Commun 2017; 8:15370 [View Article]
    [Google Scholar]
  31. Wells VL, Margolin W. A new slant to the Z ring and bacterial cell branch formation. Mol Microbiol 2012; 84:199–202 [View Article] [PubMed]
    [Google Scholar]
  32. Potluri L-P, de Pedro MA, Young KD. Escherichia coli low-molecular-weight penicillin-binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching. Mol Microbiol 2012; 84:203–224 [View Article] [PubMed]
    [Google Scholar]
  33. Surkov AV, Dubinina GA, Lysenko AM, Glöckner FO, Kuever J. Dethiosulfovibrio russensis sp. nov., Dethosulfovibrio marinus sp. nov. and Dethosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from “Thiodendron” sulfur mats in different saline environments. Int J Syst Evol Microbiol 2001; 51:327–337 [View Article] [PubMed]
    [Google Scholar]
  34. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 2016; 10:761–777 [View Article] [PubMed]
    [Google Scholar]
  35. Soutschek E, Winter J, Schindler F, Kandler O. Acetomicrobium flavidum, gen. nov., sp. nov., a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose. Syst Appl Microbiol 1984; 5:377–390 [View Article]
    [Google Scholar]
  36. Hania WB, Bouanane-Darenfed A, Cayol J-L, Ollivier B, Fardeau M-L. Reclassification of Anaerobaculum mobile, Anaerobaculum thermoterrenum, Anaerobaculum hydrogeniformans as Acetomicrobium mobile comb. nov., Acetomicrobium thermoterrenum comb. nov. and Acetomicrobium hydrogeniformans comb. nov., respectively, and emendation of the genus Acetomicrobium. Int J Syst Evol Microbiol 2016; 66:1506–1509 [View Article]
    [Google Scholar]
  37. Rees GN, Patel BK, Grassia GS, Sheehy AJ. Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 1997; 47:150–154 [View Article]
    [Google Scholar]
  38. Menes RJ, Muxí L. Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 2002; 52:157–164 [View Article] [PubMed]
    [Google Scholar]
  39. Díaz C, Baena S, Fardeau M-L, Patel BKC. Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. Int J Syst Evol Microbiol 2007; 57:1914–1918 [View Article] [PubMed]
    [Google Scholar]
  40. Baena S, Fardeau ML, Labat M, Ollivier B, Thomas P et al. Aminobacterium colombiensegen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe 1998; 4:241–250 [View Article]
    [Google Scholar]
  41. Baena S, Fardeau ML, Labat M, Ollivier B, Garcia JL et al. Aminobacterium mobile sp. nov., a new anaerobic amino-acid-degrading bacterium. Int J Syst Evol Microbiol 2000; 50 Pt 1:259–264 [View Article]
    [Google Scholar]
  42. Hamdi O, Ben Hania W, Postec A, Bouallagui H, Hamdi M et al. Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes. Int J Syst Evol Microbiol 2015; 65:609–614 [View Article] [PubMed]
    [Google Scholar]
  43. Qiu Y-L, Hanada S, Kamagata Y, Guo R-B, Sekiguchi Y. Lactivibrio alcoholicus gen. nov., sp. nov., an anaerobic, mesophilic, lactate-, alcohol-, carbohydrate- and amino-acid-degrading bacterium in the phylum Synergistetes. Int J Syst Evol Microbiol 2014; 64:2137–2145 [View Article] [PubMed]
    [Google Scholar]
  44. Honda T, Fujita T, Tonouchi A. Aminivibrio pyruvatiphilus gen. nov., sp. nov., an anaerobic, amino-acid-degrading bacterium from soil of a Japanese rice field. Int J Syst Evol Microbiol 2013; 63:3679–3686 [View Article] [PubMed]
    [Google Scholar]
  45. Vartoukian SR, Downes J, Palmer RM, Wade WG. Fretibacterium fastidiosum gen. nov., sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 2013; 63:458–463 [View Article]
    [Google Scholar]
  46. Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BK et al. Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 1997; 47:818–824 [View Article]
    [Google Scholar]
  47. Díaz-Cárdenas C, López G, Patel BKC, Baena S. Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring. Int J Syst Evol Microbiol 2010; 60:850–853 [View Article] [PubMed]
    [Google Scholar]
  48. Jumas-Bilak E, Carlier J-P, Jean-Pierre H, Citron D, Bernard K et al. Jonquetella anthropi gen. nov., sp. nov., the first member of the candidate phylum “Synergistetes” isolated from man. Int J Syst Evol Microbiol 2007; 57:2743–2748 [View Article]
    [Google Scholar]
  49. Downes J, Vartoukian SR, Dewhirst FE, Izard J, Chen T et al. Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum “Synergistetes” isolated from the human oral cavity. Int J Syst Evol Microbiol 2009; 59:972–980 [View Article]
    [Google Scholar]
  50. Jumas-Bilak E, Bouvet P, Allen-Vercoe E, Aujoulat F, Lawson PA et al. Rarimicrobium hominis gen. nov., sp. nov., representing the fifth genus in the phylum Synergistetes that includes human clinical isolates. Int J Syst Evol Microbiol 2015; 65:3965–3970 [View Article] [PubMed]
    [Google Scholar]
  51. Dahle H, Birkeland N-K. Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 2006; 56:1539–1545 [View Article] [PubMed]
    [Google Scholar]
  52. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  53. Allison MJ, Mayberry WR, McSweeney CS, Stahl DA. Synergistes jonesii, gen. nov., sp.nov.: a rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol 1992; 15:522–529 [View Article]
    [Google Scholar]
  54. Baena S, Fardeau ML, Ollivier B, Labat M, Thomas P et al. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Bacteriol 1999; 49 Pt 3:975–982 [View Article]
    [Google Scholar]
  55. Ganesan A, Chaussonnerie S, Tarrade A, Dauga C, Bouchez T et al. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum “Synergistetes”, isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 2008; 58:2003–2012 [View Article]
    [Google Scholar]
  56. Looft T, Levine UY, Stanton TB. Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus. Int J Syst Evol Microbiol 2013; 63:1960–1966 [View Article] [PubMed]
    [Google Scholar]
  57. Guangsheng C, Plugge CM, Roelofsen W, Houwen FP, Stams AJM. Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by decarboxylation of succinate to propionate. Arch Microbiol 1992; 157:169–175 [View Article]
    [Google Scholar]
  58. Baena S, Fardeau ML, Woo TH, Ollivier B, Labat M et al. Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, “Selenomonas acidaminophila” and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Bacteriol 1999; 49 Pt 3:969–974 [View Article]
    [Google Scholar]
  59. Zavarzina DG, Zhilina TN, Tourova TP, Kuznetsov BB, Kostrikina NA et al. Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio. Int J Syst Evol Microbiol 2000; 50 Pt 3:1287–1295 [View Article]
    [Google Scholar]
  60. Maune MW, Tanner RS. Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 2012; 62:832–838 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005691
Loading
/content/journal/ijsem/10.1099/ijsem.0.005691
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error