1887

Abstract

Two -like strains isolated from hot water distribution systems in 2012 have been characterized phenotypically, biochemically and genomically in terms of DNA relatedness. Both strains, HCPI-6 and EUR-108, exhibited biochemical phenotypic profiles typical of species. Cells were Gram-negative motile rods which grew on BCYEα agar but not on blood agar and displayed phenotypic characteristics typical of the family , including a requirement for -cysteine and testing catalase positive. Both strains were negative for oxidase, urease, nitrate reduction and hippurate negative, and non-fermentative. The major ubiquinone was Q12 (59.4 % HCPI-6) and the dominant fatty acids were C ω7 (28.4 % HCPI-6, ≈16 % EUR-108), C iso (≈22.5 % and ≈13 %) and C anteiso (19.5 % and ≈23.5 %, respectively). The percent G+C content of genomic DNA was determined to be 39.3 mol %. The 16S rRNA gene, sequence and comparative genome sequence-based analyses (average nucleotide identity, ANI; digital DNA–DNA hybridization, dDDH; and phylogenomic treeing) demonstrated that the strains represent a new species of the genus . The analysis based on the 16S rRNA gene sequences showed that the sequence similarities for both strains ranged from 98.8–90.1 % to other members of the genus. The core genome-based phylogenomic tree (protein-concatemer tree based on concatenation of 418 proteins present in single copy) revealed that these two strains clearly form a separate cluster within the genus . ANI and dDDH values confirmed the distinctiveness of the strains. Based on the genomic, genotypic and phenotypic findings from a polyphasic study, the isolates are considered to represent a single novel species, for which the name sp. nov. is proposed. The type strain is HCPI-6 (=CCUG 75071=CECT 30569).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005686
2023-01-17
2024-04-25
Loading full text...

Full text loading...

References

  1. Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ et al. Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med 1977; 297:1189–1197 [View Article]
    [Google Scholar]
  2. McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA et al. Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 1977; 297:1197–1203 [View Article]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  4. Winn WC et al. Jr. Legionella. In William Barnaby W, DeVos P, Chun J, Dedysh S, Hedlund B et al. eds Bergey’s Manual of Systematic Bacteriology Hoboken, New Jersey: John Wiley & Sons, Inc., in association with Bergey’s Manual Trust; 2015
    [Google Scholar]
  5. Fields BS, Benson RF, Besser RE. Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 2002; 15:506–526 [View Article]
    [Google Scholar]
  6. Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev 2015; 28:95–133 [View Article] [PubMed]
    [Google Scholar]
  7. Mondino S, Schmidt S, Rolando M, Escoll P, Gomez-Valero L et al. Legionnaires’ disease: state of the art knowledge of pathogenesis mechanisms of Legionella. Annu Rev Pathol 2020; 15:439–466 [View Article]
    [Google Scholar]
  8. Mazzotta M, Salaris S, Pascale MR, Girolamini L, Cristino S. Occurrence of Legionella spp. in man-made water sources: isolates distribution and phylogenetic characterization in the Emilia-Romagna region. Pathogens 2021; 10:552 [View Article]
    [Google Scholar]
  9. Diederen BMW. Legionella spp. and Legionnaires’ disease. J Infect 2008; 56:1–12 [View Article] [PubMed]
    [Google Scholar]
  10. Cunha BA, Burillo A, Bouza E. Legionnaires’ disease. Lancet 2016; 387:376–385 [View Article] [PubMed]
    [Google Scholar]
  11. Oliva G, Sahr T, Buchrieser C. The life cycle of L. pneumophila: cellular differentiation is linked to virulence and metabolism. Front Cell Infect Microbiol 2018; 8:3 [View Article]
    [Google Scholar]
  12. Edelstein PH, Lück C, Jorgensen JH, Carroll KC, Funke G et al. Legionella. In Manual of Clinical Microbiology, 11th edn. ASM Press; 2015
    [Google Scholar]
  13. Yong SFY, Tan SH, Wee J, Tee JJ, Sansom FM et al. Molecular detection of Legionella: moving on from mip. Front Microbiol 2010; 1:123 [View Article]
    [Google Scholar]
  14. Molina JJ, Bennassar M, Palacio E, Crespi S. Low efficacy of periodical thermal shock for long-term control of Legionella spp. in hot water system of hotels. Pathogens 2022; 11:152 [View Article]
    [Google Scholar]
  15. Bonetta S, Bonetta S, Ferretti E, Balocco F, Carraro E. Evaluation of Legionella pneumophila contamination in Italian hotel water systems by quantitative real-time PCR and culture methods. J Appl Microbiol 2010; 108:1576–1583 [View Article] [PubMed]
    [Google Scholar]
  16. Allegra S, Grattard F, Girardot F, Riffard S, Pozzetto B et al. Longitudinal evaluation of the efficacy of heat treatment procedures against Legionella spp. in hospital water systems by using a flow cytometric assay. Appl Environ Microbiol 2011; 77:1268–1275 [View Article] [PubMed]
    [Google Scholar]
  17. Kirschner AKT. Determination of viable legionellae in engineered water systems: do we find what we are looking for?. Water Res 2016; 93:276–288 [View Article]
    [Google Scholar]
  18. Rasheduzzaman M, Singh R, Haas CN, Gurian PL. Required water temperature in hotel plumbing to control Legionella growth. Water Res 2020; 182:115943 [View Article] [PubMed]
    [Google Scholar]
  19. Steinert M, Ockert G, Lück C, Hacker J. Regrowth of Legionella pneumophila in a heat-disinfected plumbing system. Zentralbl Bakteriol 1998; 288:331–342 [View Article] [PubMed]
    [Google Scholar]
  20. García MT, Jones S, Pelaz C, Millar RD, Abu Kwaik Y. Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ Microbiol 2007; 9:1267–1277 [View Article] [PubMed]
    [Google Scholar]
  21. Allegra SV, Berger FO, Berthelot P, Grattard F, Pozzetto B et al. Use of flow cytometry to monitor Legionella viability. Appl Environ Microbiol 2008; 74:7813–7816 [View Article] [PubMed]
    [Google Scholar]
  22. Murga R, Forster TS, Brown E, Pruckler JM, Fields BS et al. Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 2001; 147:3121–3126 [View Article]
    [Google Scholar]
  23. Saby S, Vidal A, Suty H. Resistance of Legionella to disinfection in hot water distribution systems. Water Sci Technol 2005; 52:15–28 [View Article] [PubMed]
    [Google Scholar]
  24. Tachikawa M, Tezuka M, Morita M, Isogai K, Okada S. Evaluation of some halogen biocides using a microbial biofilm system. Water Res 2005; 39:4126–4132 [View Article] [PubMed]
    [Google Scholar]
  25. Chang CW, Hwang YH, Cheng WY, Chang CP. Effects of chlorination and heat disinfection on long-term starved Legionella pneumophila in warm water. J Appl Microbiol 2007; 102:1636–1644 [View Article] [PubMed]
    [Google Scholar]
  26. Cianciotto NP, Fields BS. Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci 1992; 89:5188–5191 [View Article]
    [Google Scholar]
  27. Swanson MS, Hammer BK. Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 2000; 54:567–613 [View Article] [PubMed]
    [Google Scholar]
  28. Ratcliff RM, Donnellan SC, Lanser JA, Manning PA, Heuzenroeder MW. Interspecies sequence differences in the Mip protein from the genus Legionella: implications for function and evolutionary relatedness. Mol Microbiol 1997; 25:1149–1158 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article]
    [Google Scholar]
  32. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  33. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  34. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  35. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article] [PubMed]
    [Google Scholar]
  36. Swofford DP. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0 b, 10 edn. Sunderland: Sinauer Associates; 2002
    [Google Scholar]
  37. Shimada S, Nakai R, Aoki K, Kudoh S, Imura S et al. Characterization of the first cultured psychrotolerant representative of Legionella from Antarctica reveals its unique genome structure. Microbiol Spectr 2021; 9:e0042421 [View Article]
    [Google Scholar]
  38. Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  39. Ratcliff RM, Lanser JA, Manning PA, Heuzenroeder MW. Sequence-based classification scheme for the genus Legionella targeting the mip gene. J Clin Microbiol 1998; 36:1560–1567 [View Article] [PubMed]
    [Google Scholar]
  40. Pascale MR, Salaris S, Mazzotta M, Girolamini L, Fregni Serpini G et al. New insight regarding Legionella non-pneumophila species identification: comparison between the traditional mip gene classification scheme and a newly proposed scheme targeting the rpob gene. Microbiol Spectr 2021; 9:e0116121
    [Google Scholar]
  41. Salvà-Serra F, Svensson-Stadler L, Busquets A, Jaén-Luchoro D et al. A protocol for extraction and purification of high-quality and quantity bacterial DNA applicable for genome sequencing: A modified version of the Marmur procedure. Protocol Exchange 2018 [View Article]
    [Google Scholar]
  42. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  43. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  44. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  45. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  46. Brady A, Salzberg SL. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods 2009; 6:673–676 [View Article] [PubMed]
    [Google Scholar]
  47. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  48. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  49. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  50. Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A et al. A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 2010; 26:1481–1487 [View Article] [PubMed]
    [Google Scholar]
  51. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [View Article] [PubMed]
    [Google Scholar]
  52. Löytynoja A, Goldman N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 2008; 320:1632–1635 [View Article] [PubMed]
    [Google Scholar]
  53. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  54. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  55. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article] [PubMed]
    [Google Scholar]
  56. Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 1997; 14:685–695 [View Article] [PubMed]
    [Google Scholar]
  57. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320 [View Article] [PubMed]
    [Google Scholar]
  58. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  59. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  60. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  61. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  62. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  63. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article]
    [Google Scholar]
  64. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  65. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  66. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  67. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  68. Ha SM, Kim CK, Roh J, Byun JH, Yang SJ et al. Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 2019; 39:530–536 [View Article]
    [Google Scholar]
  69. Schmidt O, Schuenemann VJ, Hand NJ, Silhavy TJ, Martin J et al. prlF and yhaV encode a new toxin-antitoxin system in Escherichia coli. J Mol Biol 2007; 372:894–905 [View Article]
    [Google Scholar]
  70. Chen J, de Felipe KS, Clarke M, Lu H, Anderson OR et al. Legionella effectors that promote nonlytic release from protozoa. Science 2004; 303:1358–1361 [View Article] [PubMed]
    [Google Scholar]
  71. Voth DE, Broederdorf LJ, Graham JG. Bacterial type IV secretion systems: versatile virulence machines. Future Microbiol 2012; 7:241–257 [View Article]
    [Google Scholar]
  72. Li L-H, Zhang L, Wu H-Y, Qu P-H, Chen J-C et al. Legionella septentrionalis sp. nov., isolated from aquatic environments in the northern PR China. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  73. Zheng BX, Ibrahim M, Zhang DP, Bi QF, Li HZ et al. Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express 2018; 8:47 [View Article]
    [Google Scholar]
  74. Brenner DJ, Steigerwalt AG, Gorman GW, Wilkinson HW, Bibb WF et al. Ten new species of Legionella. Int J Syst Bacteriol 1985; 35:50–59 [View Article]
    [Google Scholar]
  75. Gots JS. The detection of penicillinase production properties of microorganisms. Science 1945; 102:309 [View Article]
    [Google Scholar]
  76. Baine WB, Rasheed JK, Feeley JC, Gorman GW, Casida LE. Effect of supplementall-tyrosine on pigment production in cultures of the Legionnaires’ disease bacterium. Current Microbiology 1978; 1:93–94 [View Article]
    [Google Scholar]
  77. Vickers RM, Yu VL. Clinical laboratory differentiation of Legionellaceae family members with pigment production and fluorescence on media supplemented with aromatic substrates. J Clin Microbiol 1984; 19:583–587 [View Article] [PubMed]
    [Google Scholar]
  78. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note #101 Newark, DE: MIDI Inc; 2001
    [Google Scholar]
  79. Adeleke AA, Fields BS, Benson RF, Daneshvar MI, Pruckler JM et al. Legionella drozanskii sp. nov., Legionella rowbothamii sp. nov. and Legionella fallonii sp. nov.: three unusual new Legionella species. Int J Syst Evol Microbiol 2001; 51:1151–1160 [View Article]
    [Google Scholar]
  80. Lambert MA, Moss CW. Cellular fatty acid compositions and isoprenoid quinone contents of 23 Legionella species. J Clin Microbiol 1989; 27:465–473 [View Article] [PubMed]
    [Google Scholar]
  81. Diogo A, Veríssimo A, Nobre MF, da Costa MS. Usefulness of fatty acid composition for differentiation of Legionella species. J Clin Microbiol 1999; 37:2248–2254 [View Article] [PubMed]
    [Google Scholar]
  82. Kowalczyk B, Chmiel E, Palusinska-Szysz M. The role of lipids in Legionella-host interaction. IJMS 2021; 22:1487 [View Article]
    [Google Scholar]
  83. Hess PN, DE Moraes Russo CA. An empirical test of the midpoint rooting method. Biol J Linn Soc Lond 2007; 92:669–674 [View Article] [PubMed]
    [Google Scholar]
  84. Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 2004; 36:1165–1173 [View Article] [PubMed]
    [Google Scholar]
  85. Rizzardi K, Winiecka-Krusnell J, Ramliden M, Alm E, Andersson S et al. Legionella norrlandica sp. nov., isolated from the biopurification systems of wood processing plants. Int J Syst Evol Microbiol 2015; 65:598–603 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005686
Loading
/content/journal/ijsem/10.1099/ijsem.0.005686
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error