Skip to content
1887

Abstract

The International Code of Nomenclature of Prokaryotes (ICNP) recently underwent some major modifications regarding the higher taxonomic ranks. On the one hand, the phylum category was introduced into the ICNP, which rapidly led to the valid publication of more than forty names of phyla. On the other hand, a decision on the retroactivity of Rule 8 regarding the names of classes was made, which removed most of the nomenclatural uncertainty that had affected those names during the last decade. However, it turned out that a number of names at the ranks of class, order and family are either not validly published or are validly published but illegitimate, although these names occur in the literature and are based on the type genus of a phylum with a validly published name. A closer examination of the literature for these and similar cases indicates that the names are unavailable under the ICNP either because of minor formal errors in the original descriptions, because another name should have been adopted for the taxon when the name was proposed, because of taxonomic uncertainties that were settled in the meantime, or because the names were placed on the list of rejected names. The purpose of this article is to fill the gaps by providing the missing formal descriptions and to ensure that the resulting taxon names are attributed to the original authors who did the taxonomic work.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005638
2022-12-14
2025-04-21
Loading full text...

Full text loading...

References

  1. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes – Prokaryotic Code (2008 revision). Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article]
    [Google Scholar]
  2. Oren A, Arahal DR, Rosselló-Móra R, Sutcliffe IC, Moore ERB. Emendation of Rules 5b, 8, 15 and 22 of the International Code of Nomenclature of Prokaryotes to include the rank of phylum. Int J Syst Evol Microbiol 2021; 71:4851 [View Article]
    [Google Scholar]
  3. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:005056 [View Article]
    [Google Scholar]
  4. Sneath PHA, McGowan V, Skerman VBD. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420 [View Article]
    [Google Scholar]
  5. Tindall BJ. The undesirable retroactive changes to Rule 8 of the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2016; 66:4895–4896 [View Article]
    [Google Scholar]
  6. Göker M. Solving the remaining problems with names of classes. Request for an opinion. Int J Syst Evol Microbiol 2022; 72:5605 [View Article]
    [Google Scholar]
  7. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  8. Whitman WB, Bull CT, Busse H-J, Fournier P-E, Oren A et al. Request for revision of the statutes of the International Committee on Systematics of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:584–593 [View Article]
    [Google Scholar]
  9. Oren A, Garrity GM. Notification that new names of prokaryotes, new combinations, and new taxonomic opinions have appeared in volume 71, part 10 of the IJSEM. Int J Syst Evol Microbiol 2022; 72:5165 [View Article] [PubMed]
    [Google Scholar]
  10. Arahal DR, Busse H-J, Bull CT, Christensen H, Chuvochina M et al. Judicial Opinions 112-122. Int J Syst Evol Microbiol 2022; 72:5481 [View Article]
    [Google Scholar]
  11. Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen nov., comb. nov., transfer of Thiobacillus (Beijerinck) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 2017; 67:1191–1205 [View Article]
    [Google Scholar]
  12. Spring S, Bunk B, Spröer C, Schumann P, Rohde M et al. Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISME J 2016; 10:2801–2816 [View Article] [PubMed]
    [Google Scholar]
  13. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67:529–531 [View Article] [PubMed]
    [Google Scholar]
  14. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972–6016 [View Article] [PubMed]
    [Google Scholar]
  15. Garrity GM, Bell JA. Order VII. Bdellovibrionales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), 2nd edn. vol 2 New York: Springer; 2005 p 1040
    [Google Scholar]
  16. List Editor List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006; 56:1–6 [View Article]
    [Google Scholar]
  17. Garrity GM, Bell JA. Family I. Bdellovibrionaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), 2nd edn. vol 2 New York: Springer; 2005 pp 1040–1041
    [Google Scholar]
  18. Stolp H, Starr MP. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie van Leeuwenhoek 1963; 29:217–248 [View Article]
    [Google Scholar]
  19. Baer ML, Ravel J, Chun J, Hill RT, Williams HN. A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 2000; 50 Pt 1:219–224 [View Article]
    [Google Scholar]
  20. Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 2004; 54:1439–1452 [View Article]
    [Google Scholar]
  21. Garrity GM, Bell JA. Order III: Rhodobacterales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology(The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), 2nd edn. vol 2 New York: Springer; 2005 p 161
    [Google Scholar]
  22. Garrity GM, Bell JA. Family I. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), 2nd edn. vol 2 New York: Springer; 2005 p 161
    [Google Scholar]
  23. Moore RL, Weiner RM, Gebers R. Genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). Int J Syst Bacteriol 1984; 34:71–73 [View Article]
    [Google Scholar]
  24. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919
    [Google Scholar]
  25. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article]
    [Google Scholar]
  26. Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter clade” into a novel family, Roseobacteraceae fam. nov.. Front Microbiol 2021; 12:683109 [View Article]
    [Google Scholar]
  27. Oren A, Garrity GM. Validation list no.202. valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2021; 71:5096
    [Google Scholar]
  28. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969; 19:375–390 [View Article]
    [Google Scholar]
  29. Kublanov IV, Sigalova OM, Gavrilov SN, Lebedinsky AV, Rinke C et al. Genomic analysis of Caldithrix abyssi, the thermophilic anaerobic bacterium of the novel bacterial phylum Calditrichaeota. Front Microbiol 2017; 8:195 [View Article]
    [Google Scholar]
  30. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2020; 70:2960–2966 [View Article] [PubMed]
    [Google Scholar]
  31. Cavalier-Smith T, Chao EE-Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma 2020; 257:621–753 [View Article] [PubMed]
    [Google Scholar]
  32. Lücker S, Nowka B, Rattei T, Spieck E, Daims H. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front Microbiol 2013; 4:27 [View Article]
    [Google Scholar]
  33. Watson SW, Waterbury JB. Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Archiv Mikrobiol 1971; 77:203–230 [View Article]
    [Google Scholar]
  34. Garrity GM, Bell JA, Lilburn T. Family III. Nitrospinaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), 2nd edn. vol 2 New York: Springer; 2005 p 999
    [Google Scholar]
  35. Garrity GM, Holt JG. Phylum B: Nitrospirae phy. nov. In Boone DR, Castenholz RW, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology (The Archaea and the Deeply Branching and Phototrophic Bacteria), 2nd edn. vol 1 New York: Springer-Verlag; 2001 pp 451–464
    [Google Scholar]
  36. Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U. Nitrospira marina gen. nov., sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 1986; 144:1–7
    [Google Scholar]
  37. List Editor Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 21. Int J Syst Bacteriol 1986; 36:489 [View Article]
    [Google Scholar]
  38. Hippe H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol 2000; 50 Pt 2:501–503 [View Article]
    [Google Scholar]
  39. Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR et al. Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 1994; 161:62–69 [PubMed]
    [Google Scholar]
  40. List Editor Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 50. Int J Syst Bacteriol 1994; 44:595 [View Article]
    [Google Scholar]
  41. Umezawa K, Kojima H, Kato Y, Fukui M. Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio. Syst Appl Microbiol 2021; 44:126184 [View Article] [PubMed]
    [Google Scholar]
  42. Yu H, Chadwick GL, Lingappa UF, Leadbetter JR. Comparative genomics on cultivated and uncultivated freshwater and marine "Candidatus Manganitrophaceae" species implies their worldwide reach in manganese chemolithoautotrophy. mBio 2022; 13:e0342121 [View Article]
    [Google Scholar]
  43. Tindall BJ. Introducing the concept of the isonym into the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:1515–1518 [View Article]
    [Google Scholar]
  44. Judicial Commission of the International Committee on Systematic Bacteriology Opinion 55: rejection of the species name Mycobacterium aquae Jenkins et al. 1972. Int J Syst Bacteriol 1982; 32:467 [View Article]
    [Google Scholar]
  45. Judicial Commission of the International Committee on Systematic Bacteriology Opinion 54: rejection of the species name Pseudomonas denitrificans (Christensen) Bergey et al. 1923. Int J Syst Bacteriol 1982; 32:466 [View Article]
    [Google Scholar]
  46. Tindall BJ. Names at the rank of class, subclass and order, their typification and current status: Supplementary information to Opinion 79. Judicial Commission of the International Committee on Systematics of Prokaryotes. Int J Syst Evol Microbiol 2014; 64:3599–3602 [View Article]
    [Google Scholar]
  47. Tindall BJ. The genus name Methanothrix Huser et al. 1983 and the species combination Methanothrix soehngenii Huser et al. 1983 do not contravene Rule 31a and are not to be considered as rejected names, the genus name Methanosaeta Patel and Sprott 1990 refers to the same taxon as Methanothrix soehngenii Huser et al. 1983 and the species combination Methanothrix thermophila Kamagata et al is rejected: supplementary information to Opinion 75. Judicial Commission of the International Committee on Systematics of Prokaryotes. Int J Syst Evol Microbiol 2014; 64:3597–3598 [View Article]
    [Google Scholar]
  48. Kishimoto N, Kosako Y, Tano T. Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 1991; 22:1–7
    [Google Scholar]
  49. List Editor Validation of the publication of new names and new combinations previously effectively published outside the IJSB: list no. 38. Int J Syst Bacteriol 1991; 41:456–457 [View Article]
    [Google Scholar]
  50. Thrash JC, Coates JD et al. Class I. Acidobacteria Cavalier-Smith 2002, 12 VP emend. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. eds Bergey’s Manual of Systematic Bacteriology(The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes), 2nd edn. vol 4 New York: Springer; 2010 p 727
    [Google Scholar]
  51. Cavalier-Smith T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 2002; 52:7–76 [View Article] [PubMed]
    [Google Scholar]
  52. Dedysh SN, Yilmaz P. Refining the taxonomic structure of the phylum Acidobacteria. Int J Syst Evol Microbiol 2018; 68:3796–3806 [View Article] [PubMed]
    [Google Scholar]
  53. Dedysh SN, Kulichevskaya IS, Huber KJ, Overmann J. Defining the taxonomic status of described subdivision 3 Acidobacteria: proposal of Bryobacteraceae fam. nov. Int J Syst Evol Microbiol 2017; 67:498–501 [View Article] [PubMed]
    [Google Scholar]
  54. List Editor List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2012; 62:1–4 [View Article]
    [Google Scholar]
  55. Eichorst SA, Breznak JA, Schmidt TM. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 2007; 73:2708–2717 [View Article]
    [Google Scholar]
  56. Validation List no. 117. list of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2007; 57:1933–1934 [View Article]
    [Google Scholar]
  57. Tindall BJ. The family name Solimonadaceae Losey et al. 2013 is illegitimate, proposals to create the names 'Sinobacter soli’ comb. nov. and 'Sinobacter variicoloris’ contravene the Code, the family name Xanthomonadaceae Saddler and Bradbury 2005 and the order name Xanthomonadales Saddler and Bradbury 2005 are illegitimate and notes on the application of the family names Solibacteraceae Zhou et al, Nevskiaceae Henrici and Johnson 1935 (Approved Lists 1980) and Lysobacteraceae Christensen and Cook 1978 (Approved Lists 1980) and order name Lysobacteriales Christensen and Cook 1978 (Approved Lists 1980) with respect to the classification of the corresponding type genera Solibacter Zhou et al. 2008, Nevskia Famintzin 1892 (Approved Lists 1980) and Lysobacter Christensen and Cook 1978 (Approved Lists 1980) and importance of accurately expressing the link between a taxonomic name, its authors and the corresponding description/circumscription/emendation. Int J Syst Evol Microbiol 2014; 64:293–297 [View Article]
    [Google Scholar]
  58. Garrity GM, Holt JG. Phylum BXI. Chlorobi phy. nov. In Boone DR, Castenholz RW, Garrity G. eds Bergey’s Manual of Systematic Bacteriology (The Archaea and the Deeply Branching and Phototrophic Bacteria), 2nd edn. vol 1 New York: Springer-Verlag; 2001 pp 601–623
    [Google Scholar]
  59. Nadson GA. The morphology of inferior algae. III. Chlorobium limicola Nads., the green chlorophyll bearing microbe (in Russian). Bull Jardin Botanique 1906; 6:190
    [Google Scholar]
  60. Copeland HF. The Classification of Lower Organisms Palo Alto, California: Pacific Books; 1956
    [Google Scholar]
  61. Gibbons NE, Murray RGE. Proposals concerning the higher taxa of bacteria. Int J Syst Bacteriol 1978; 28:1–6 [View Article]
    [Google Scholar]
  62. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article]
    [Google Scholar]
  63. Salam N, Jiao JY, Zhang XT, Li WJ. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol 2020; 70:1331–1355 [View Article] [PubMed]
    [Google Scholar]
  64. Waksman SA, Henrici AT. The nomenclature and classification of the Actinomycetes. J Bacteriol 1943; 46:337–341 [View Article]
    [Google Scholar]
  65. Volpiano CG, Sant’Anna FH, da Mota FF, Sangal V, Sutcliffe I et al. Proposal of Carbonactinosporaceae fam. nov. within the class Actinomycetia. reclassification of Streptomyces thermoautotrophicus as Carbonactinospora thermoautotrophica gen. nov., comb. nov. Syst Appl Microbiol 2021; 44:126223 [View Article]
    [Google Scholar]
  66. Oren A, Garrity GM. Validation list no. 201. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2021; 71:4943 [View Article]
    [Google Scholar]
  67. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  68. Omura S, Takahashi Y, Iwai Y, Tanaka H. Kitasatosporia, a new genus of the order Actinomycetales. J Antibiot 1982; 35:1013–1019 [View Article]
    [Google Scholar]
  69. List Editor Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 11. Int J Syst Bacteriol 1983; 33:672–674 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005638
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error