1887

Abstract

A Gram-stain-positive, facultative anaerobic endospore-forming bacterium, which originated from roots/rhizosphere of maize (), was investigated for its taxonomic position. On the basis of 16S rRNA gene sequence similarities, strain JJ-3 was grouped together with species showing the highest similarities to (98.8 %) and the three species , and (all 98.6 %). The 16S rRNA gene sequence similarities to the sequences of the type strains of other species were lower than 98.5 %. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the JJ-3 genome assembly and those of the other type strains were <83, <85 and <27 %, respectively. Chemotaxonomic features supported the grouping of the strain to the genus e.g. the major fatty acids were C anteiso and C iso, the polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, and the major quinone was menaquinone MK-7. Physiological and biochemical test results were slightly different from those of the most closely related species. For this reason, JJ-3 represents a novel species of the genus , for which we propose the name sp. nov., with JJ-3 (= CIP 111895=LMG 32087=DSM 111784=CCM 9084) as the type strain. We also propose to reclassify as comb. nov. based mainly on the results of phylogenomic and conserved signature indel analyses.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005636
2022-11-03
2024-04-19
Loading full text...

Full text loading...

References

  1. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article]
    [Google Scholar]
  2. Nagel M, Andreesen JR. Bacillus niacini sp. nov., a nicotinate-metabolizing mesophile isolated from soil. Int J Syst Bacteriol 1991; 41:134–139 [View Article]
    [Google Scholar]
  3. Logan NA, Lebbe L, Hoste B, Goris J, Forsyth G et al. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1741–1753 [View Article]
    [Google Scholar]
  4. Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodríguez-Díaz M et al. Bacillus novalis sp nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the drentse a grasslands. Int J Syst Evol Microbiol 2004; 54:47–57 [View Article]
    [Google Scholar]
  5. Ten LN, Baek S-H, Im W-T, Larina LL, Lee J-S et al. Bacillus pocheonensis sp. nov., a moderately halotolerant, aerobic bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2007; 57:2532–2537 [View Article] [PubMed]
    [Google Scholar]
  6. Nguyen N-L, Kim Y-J, Hoang V-A, Min JW, Liang Z-Q et al. Bacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013; 63:855–860 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang M-Y, Cheng J, Cai Y, Zhang T-Y, Wu Y-Y et al. Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of Panax notoginseng. Int J Syst Evol Microbiol 2017; 67:2581–2585 [View Article] [PubMed]
    [Google Scholar]
  8. Kämpfer P, Busse H-J, Glaeser SP, Kloepper JW, Hu C-H et al. Bacillus cucumis sp. nov. isolated from the rhizosphere of cucumber (Cucumis sativus). Int J Syst Evol Microbiol 2016; 66:1039–1044 [View Article] [PubMed]
    [Google Scholar]
  9. Liu B, Liu GH, Hu GH, Chen MC. Bacillus mesonae sp. nov., isolated from the root of Mesona chinensis. Int J Syst Evol Microbiol 2014; 64:3346–3352 [View Article] [PubMed]
    [Google Scholar]
  10. Jiang L, Lee MH, Jeong JC, Kim D-H, Kim CY et al. Neobacillus endophyticus sp. nov., an endophytic bacterium isolated from Selaginella involvens roots. Int J Syst Evol Microbiol 2019; 71:004581 [View Article] [PubMed]
    [Google Scholar]
  11. Han L, Yang G, Zhou X, Yang D, Hu P et al. Bacillus thermocopriae sp. nov., isolated from a compost. Int J Syst Evol Microbiol 2013; 63:3024–3029 [View Article] [PubMed]
    [Google Scholar]
  12. Yu L, Tang X, Wei S, Qiu Y, Xu X et al. Two novel species of the family Bacillaceae: Oceanobacillus piezotolerans sp nov. and Bacillus piezotolerans sp. nov., from deep-sea sediment samples of Yap Trench. Int J Syst Evol Microbiol 2019; 69:3022–3030 [View Article]
    [Google Scholar]
  13. Bittar F, Bibi F, Ramasamy D, Lagier J-C, Azhar EI et al. Non contiguous-finished genome sequence and description of Bacillus jeddahensis sp. nov. Stand Genomic Sci 2015; 10:47 [View Article]
    [Google Scholar]
  14. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M et al. eds Nucleic Acid Techniques in Bacterial Systematics London: Wiley; 1990 pp 115–175
    [Google Scholar]
  15. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 1977; 74:5463–5467 [View Article]
    [Google Scholar]
  16. Coloqhoun JA. Discovery of deep-sea actinomycetes PhD dissertation Canterbury, UK: Research School of Biosciences, University of Kent; 1997
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  18. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci 1978; 75:4801–4805 [View Article]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Ludwig W, Viver T, Westram R, Francisco Gago J, Bustos-Caparros E et al. Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol 2021; 44:126218 [View Article] [PubMed]
    [Google Scholar]
  21. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article]
    [Google Scholar]
  22. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article]
    [Google Scholar]
  23. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits of phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  25. Cherif-Silini H, Thissera B, Bouket AC, Saadaoui N, Silini A et al. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. Int J Mol Sci 2019; 20:3989 [View Article]
    [Google Scholar]
  26. Gao S, Wu H, Yu X, Qian L, Gao X. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biological Control 2016; 98:11–17 [View Article]
    [Google Scholar]
  27. Nascimento FX, Hernández AG, Glick BR, Rossi MJ. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol Rep 2020; 25:e00406 [View Article]
    [Google Scholar]
  28. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  29. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article]
    [Google Scholar]
  30. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  31. Katoh K, Standley DM. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 2016; 32:1933–1942 [View Article] [PubMed]
    [Google Scholar]
  32. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  33. Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dávila Felipe M et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 2018; 556:452–456 [View Article] [PubMed]
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  35. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article]
    [Google Scholar]
  36. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  37. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  38. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article] [PubMed]
    [Google Scholar]
  39. Kämpfer P. Evaluation of the titertek-enterobac-automated system (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 1990; 273:164–172 [View Article]
    [Google Scholar]
  40. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  41. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  42. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  43. Wiertz R, Schulz SC, Müller U, Kämpfer P, Lipski A. Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 2013; 63:4495–4501 [View Article] [PubMed]
    [Google Scholar]
  44. Liu B, Liu G-H, Sengonca C, Schumann P, Wang J-P et al. Bacillus praedii sp. nov., isolated from purplish paddy soil. Int J Syst Evol Microbiol 2017; 67:2823–2828 [View Article] [PubMed]
    [Google Scholar]
  45. Kämpfer P, Busse H-J, McInroy JA, Hu C-H, Kloepper JW et al. Bacillus zeae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017; 67:1241–1246 [View Article] [PubMed]
    [Google Scholar]
  46. Xue L, Tang L, Zhao J, Fang Z, Liu H et al. Bacillus salipaludis sp. nov., isolated from saline-alkaline soil. Arch Microbiol 2021; 203:2211–2217 [View Article]
    [Google Scholar]
  47. Lo CI, Padhmanabhan R, Mediannikov O, Terras J, Robert C et al. High-quality genome sequence and description of Bacillus dielmoensis strain FF4(T) sp. nov. Stand Genomic Sci 2015; 10:41 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005636
Loading
/content/journal/ijsem/10.1099/ijsem.0.005636
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error