1887

Abstract

Bacteria in the genus have been found in extreme environments, e.g. glaciers, brine and mural paintings. Here, we report the discovery of a novel pink-coloured bacterium, strain QL17, capable of producing an extracellular water-soluble blue pigment. The bacterium was isolated from the soil of the East Rongbuk Glacier of Mt. Everest, China. 16S rRNA gene sequence analysis showed that strain QL17 was most closely related to the species KR32 . However, compared to KR32 and the next closest relatives, the new species demonstrates considerable phylogenetic distance at the whole-genome level, with an average nucleotide identity of <85 % and inferred DNA–DNA hybridization of <30 %. Polyphasic taxonomy results support our conclusion that strain QL17 represents a novel species of the genus . Strain QL17 had the highest tolerance to hydrogen peroxide at 400 mM. Whole-genome sequencing of strain QL17 revealed the presence of numerous cold-adaptation, antioxidation and UV resistance-associated genes, which are related to adaptation to the extreme environment of Mt. Everest. Results of this study characterized a novel psychrotolerant species, for which the name sp. nov. is proposed. The type strain is QL17 (GDMCC 1.2948=JCM 35246).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31870479)
    • Principle Award Recipient: WeiZhang
  • National Key R&D Program of China (Award 2019YFE0121100)
    • Principle Award Recipient: TuoChen
  • Scientific Project of Gansu Province, China (Award 20JR5RA548)
    • Principle Award Recipient: WeiZhang
  • Scientific Project of Gansu Province, China (Award 20YF3WA007)
    • Principle Award Recipient: GaosenZhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005624
2022-12-07
2024-04-25
Loading full text...

Full text loading...

References

  1. Zhang S hong, Hou S gui, Yang G li, Wang J hui. Bacterial community in the east rongbuk glacier, Mt. Qomolangma (Everest) by culture and culture-independent methods. Microbiol Res 2010; 165:336–345 [View Article]
    [Google Scholar]
  2. Zhang S, Yang G, Wang Y, Hou S. Abundance and community of snow bacteria from three glaciers in the Tibetan Plateau. J Environ Sci 2010; 22:1418–1424 [View Article]
    [Google Scholar]
  3. Martín-Cerezo ML, García-López E, Cid C. Isolation and identification of a red pigment from the antarctic bacterium Shewanella frigidimarina. Protein Pept Lett 2015; 22:1076–1082 [View Article]
    [Google Scholar]
  4. Margesin R. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeterior Biodegrad 2000; 46:3–10 [View Article]
    [Google Scholar]
  5. Liu Q, Xin YH, Chen XL, Liu HC, Zhou YG et al. Arthrobacter ruber sp. nov., isolated from glacier ice. Int J Syst Evol Microbiol 2018; 68:1616–1621 [View Article] [PubMed]
    [Google Scholar]
  6. Wang F, Gai Y, Chen M, Xiao X. Arthrobacter psychrochitiniphilus sp. nov., a psychrotrophic bacterium isolated from Antarctica. Int J Syst Evol Microbiol 2009; 59:2759–2762 [View Article] [PubMed]
    [Google Scholar]
  7. Liu Q, Liu HC, Zhou YG, Xin YH. Genetic diversity of glacier-inhabiting cryobacterium bacteria in China and description of Cryobacterium zongtaii sp. nov. and Arthrobacter glacialis sp. nov. Syst Appl Microbiol 2019; 42:168–177 [View Article]
    [Google Scholar]
  8. Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS et al. Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 2011; 4:449–460 [View Article] [PubMed]
    [Google Scholar]
  9. Malvick D, Syverson R, Mollov D, Ishimaru CA. Goss’s bacterial blight and wilt of corn caused by Clavibacter michiganensis subsp. nebraskensis occurs in minnesota. Plant Dis 2010; 94:1064 [View Article]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  11. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  12. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  13. Sasser M. MIDI technical note 101. Identification of bacteria by gas chromatography of cellular fatty acids Newark: MIDI; 1990
    [Google Scholar]
  14. Minnikin DE, Pirouz T, Goodfellow M. Polar lipid composition in the classification of some actinomadura species. Int J Syst Bacteriol 1977; 27:118–121 [View Article]
    [Google Scholar]
  15. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  16. Collins MD. Isoprenoid Quinone Analyses in Bacterial Classification and Identification Society of Applied Bacteriology; 1985
    [Google Scholar]
  17. Toh H, Shirane K, Miura F, Kubo N, Ichiyanagi K et al. Software updates in the illumina HiSeq platform affect whole-genome bisulfite sequencing. BMC Genomics 2017; 18:31 [View Article]
    [Google Scholar]
  18. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015; 12:733–735 [View Article] [PubMed]
    [Google Scholar]
  19. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  20. Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 2005; 33:W451–4 [View Article] [PubMed]
    [Google Scholar]
  21. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  23. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Weber T, Blin K, Duddela S, Krug D, Kim HU et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015; 43:W237–43 [View Article] [PubMed]
    [Google Scholar]
  26. Narsing Rao MP, Xiao M, Li W-J. Fungal and bacterial sigments: secondary metabolites with wide applications. Front Microbiol 2017; 8:1113 [View Article]
    [Google Scholar]
  27. Wang S, Jiang L, Hu Q, Cui L, Zhu B et al. Characterization of Sulfurimonas hydrogeniphila sp. nov., a novel bacterium predominant in deep-sea hydrothermal vents and comparative genomic analyses of the genus Sulfurimonas. Front Microbiol 2021; 12:626705 [View Article]
    [Google Scholar]
  28. Matsumoto H, Silverton SF, Debolt K, Shapiro IM. Superoxide dismutase and catalase activities in the growth cartilage: relationship between oxidoreductase activity and chondrocyte maturation. J Bone Miner Res 1991; 6:569–574 [View Article] [PubMed]
    [Google Scholar]
  29. Brenner DJ, Krieg NR, Staley JT, Garrity GM, Boone DR et al. Bergey’s Manual of Systematic Bacteriology (Chapter 2) Springer; 2005
    [Google Scholar]
  30. Flegler A, Runzheimer K, Kombeitz V, Mänz AT, Heidler von Heilborn D et al. Arthrobacter bussei sp. nov., a pink-coloured organism isolated from cheese made of cow’s milk. Int J Syst Evol Microbiol 2020; 70:3027–3036 [View Article] [PubMed]
    [Google Scholar]
  31. Deming JW. Psychrophiles and polar regions. Curr Opin Microbiol 2002; 5:301–309 [View Article] [PubMed]
    [Google Scholar]
  32. Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E et al. Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl Environ Microbiol 2010; 76:4969–4976 [View Article] [PubMed]
    [Google Scholar]
  33. Miao V, Brost R, Chapple J, She K, Gal M-FC-L et al. The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J Ind Microbiol Biotechnol 2006; 33:129–140 [View Article] [PubMed]
    [Google Scholar]
  34. Janso JE, Haltli BA, Eustáquio AS, Kulowski K, Waldman AJ et al. Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica.. Tetrahedron 2014; 70:4156–4164 [View Article] [PubMed]
    [Google Scholar]
  35. Gualerzi CO, Giuliodori AM, Pon CL. Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 2003; 331:527–539 [View Article] [PubMed]
    [Google Scholar]
  36. Hesami S, Metcalf DS, Lumsden JS, Macinnes JI. Identification of cold-temperature-regulated genes in Flavobacterium psychrophilum. Appl Environ Microbiol 2011; 77:1593–1600 [View Article] [PubMed]
    [Google Scholar]
  37. Barria C, Malecki M, Arraiano CM. Bacterial adaptation to cold. Microbiology 2013; 159:2437–2443 [View Article]
    [Google Scholar]
  38. Kang SC, Zhang YL, Zhang QG. To the top of the earth: climate and environmental changes in Mt. Qomolangma region during past 60 years. Chin J Nature 2020; 42:355–363
    [Google Scholar]
  39. Wu H, Gao K, Villafañe VE, Watanabe T, Helbling EW. Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl Environ Microbiol 2005; 71:5004–5013 [View Article] [PubMed]
    [Google Scholar]
  40. Li Y, Cha Q-Q, Dang Y-R, Chen X-L, Wang M et al. Reconstruction of the functional ecosystem in the high light, low temperature Union Glacier Region, Antarctica. Front Microbiol 2019; 10:2408 [View Article]
    [Google Scholar]
  41. Briviba K, Klotz LO, Sies H. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem 1997; 378:1259–1265 [PubMed]
    [Google Scholar]
  42. Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol 2003; 57:395–418 [View Article] [PubMed]
    [Google Scholar]
  43. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 2015; 97:55–74 [View Article]
    [Google Scholar]
  44. Chandra P, Sharma RK, Arora DS. Antioxidant compounds from microbial sources: a review. Food Res Int 2020; 129:108849 [View Article]
    [Google Scholar]
  45. Knackmuss HJ, Beckmann W. The structure of nicotine blue from Arthrobacter oxidans. Arch Mikrobiol 1973; 90:167–169 [View Article] [PubMed]
    [Google Scholar]
  46. Kuhn DA, Starr MP. Arthrobacter atrocyaneus, n. sp., and its blue pigment. Arch Mikrobiol 1960; 36:175–181 [View Article] [PubMed]
    [Google Scholar]
  47. Reverchon S, Rouanet C, Expert D, Nasser W. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J Bacteriol 2002; 184:654–665 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005624
Loading
/content/journal/ijsem/10.1099/ijsem.0.005624
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error