Skip to content
1887

Abstract

A novel species of the genus , designated ASW11-100, was isolated from a tidal flat sediment in the Yellow Sea, PR China. Phylogenetic analysis based on 16S rRNA gene sequences and single-copy orthologous clusters revealed that strain ASW11-100 belonged to the genus , and exhibited 16S rRNA gene sequence similarities of 98.9, 98.8 and 98.7 % to HSMS-1, GHTF-27 and KT0803, respectively. The genome of strain ASW11-100 harbours 2950 protein-coding genes and 105 carbohydrate-active enzymes including 38 glycoside hydrolases. Seventeen of the glycoside hydrolases are organized in five distinct polysaccharide utilization loci, which are predicted to involve in the degradation of starch, glucans, arabinoxylans, arabinomannan, arabinans and arabinogalactans. The genomic DNA G+C content was 37.3 mol%. The digital DNA–DNA hybridization and average nucleotide identity values between strain ASW11-100 and its closely related relatives were in ranges of 19.8–23.9% and 76.6–80.9 %, respectively. Cells of the isolate were Gram-negative, aerobic, non-flagellated and short rod-shaped. Carotenoid pigments were produced, but flexirubin-type pigments were absent. The major fatty acids (>10 %) were iso-C, iso-C 3-OH and summed feature 3 (C 6 and/or C 7). The sole respiratory quinone was menaquinone-6 and the major polar lipid was phosphatidylethanolamine. Based on the above polyphasic evidence, strain ASW11-100 should be considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is ASW11-100 (=KCTC 82502=MCCC 1K05580).

Funding
This study was supported by the:
  • Science and Technology Innovation Fund Project of Shanxi Agricultural University (Award 2020BQ07)
    • Principle Award Recipient: Cheng-QiangXia
  • Excellent Talents Come to Shanxi to Reward Scientific Research Projects (Award SXYBKY2019025)
    • Principle Award Recipient: YiLi
  • Excellent Talents Come to Shanxi to Reward Scientific Research Projects (Award SXYBKY2019024)
    • Principle Award Recipient: Cheng-QiangXia
  • National Natural Science Foundation of China (Award 31972590)
    • Principle Award Recipient: Cai-XiaPei
  • National Natural Science Foundation of China (Award 32002143)
    • Principle Award Recipient: Cheng-QiangXia
  • Youth Foundation of the Shanxi Science and Technology Department (Award 201901D211375)
    • Principle Award Recipient: Cheng-QiangXia
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005621
2022-11-09
2025-03-21
Loading full text...

Full text loading...

References

  1. McBride MJ. The family Flavobacteriaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds In The Prokaryotes-Other Major Lineages of Bacteria and the Archaea, 4th edn. New York: Springer; 2014 pp 643–676
    [Google Scholar]
  2. Kirchman DL. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 2002; 39:91–100 [View Article]
    [Google Scholar]
  3. Bernardet JF et al. Family I Flavobacteriaceae Reichenbach 1992. In Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. New York: Springer; 1992 pp 106–111
    [Google Scholar]
  4. Bernardet JF, Nakagawa Y. An introduction to the family Flavobacteriaceae. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. eds The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn. vol 7 New York: Springer; 2006 pp 455–480
    [Google Scholar]
  5. Bowman JP. The marine clade of the family Flavobacteriaceae: the genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter, and Zobellia. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. eds The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn. vol 7 New York: Springer; 2006 pp 677–694
    [Google Scholar]
  6. Cottrell MT, Kirchman DL. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 2000; 66:1692–1697 [View Article]
    [Google Scholar]
  7. Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG et al. Ecology of marine bacteroidetes: a comparative genomics approach. ISME J 2013; 7:1026–1037 [View Article]
    [Google Scholar]
  8. Mann AJ, Hahnke RL, Huang S, Werner J, Xing P et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol 2013; 79:6813–6822 [View Article] [PubMed]
    [Google Scholar]
  9. Bennke CM, Krüger K, Kappelmann L, Huang S, Gobet A et al. Polysaccharide utilisation loci of bacteroidetes from two contrasting open ocean sites in the North Atlantic. Environ Microbiol 2016; 18:4456–4470 [View Article]
    [Google Scholar]
  10. Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J 2019; 13:76–91 [View Article] [PubMed]
    [Google Scholar]
  11. Mann AJ, Hahnke RL, Huang S, Werner J, Xing P et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol 2013; 79:6813–6822 [View Article] [PubMed]
    [Google Scholar]
  12. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV et al. Gramella echinicola gen. nov., sp. nov., a novel halophilic bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2005; 55:391–394 [View Article]
    [Google Scholar]
  13. Liu L, Wang S, Zhou S, Sun W, Fu T et al. Gramella bathymodioli sp. nov., isolated from a mussel inhabiting a hydrothermal field in the Okinawa Trough. Int J Syst Evol Microbiol 2020; 70:5854–5860 [View Article] [PubMed]
    [Google Scholar]
  14. Nedashkovskaya OI, Kim SB, Bae KS. Gramella marina sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2010; 60:2799–2802 [View Article] [PubMed]
    [Google Scholar]
  15. Shahina M, Hameed A, Lin S-Y, Lee R-J, Lee M-R et al. Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. Antonie van Leeuwenhoek 2014; 105:771–779 [View Article] [PubMed]
    [Google Scholar]
  16. Park S, Kim S, Jung YT, Yoon JH. Gramella aquimixticola sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2015; 65:4244–4249 [View Article] [PubMed]
    [Google Scholar]
  17. Shin SK, Kim E, Yi H. Gramella salexigens sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2018; 68:2381–2385 [View Article] [PubMed]
    [Google Scholar]
  18. Liu K, Li S, Jiao N, Tang K. Gramella flava sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Int J Syst Evol Microbiol 2014; 64:165–168 [View Article] [PubMed]
    [Google Scholar]
  19. Panschin I, Becher M, Verbarg S, Spröer C, Rohde M et al. Description of Gramella forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of Gramella gaetbulicola Cho et al. 2011. Int J Syst Evol Microbiol 2017; 67:697–703 [View Article]
    [Google Scholar]
  20. Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S et al. Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2005; 55:2497–2500 [View Article]
    [Google Scholar]
  21. Hameed A, Shahina M, Lin S-Y, Liu Y-C, Lai W-A et al. Gramella oceani sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2014; 64:2675–2681 [View Article]
    [Google Scholar]
  22. Li AZ, Han XB, Lin LZ, Zhang MX, Zhu HH. Gramella antarctica sp. nov., isolated from marine surface sediment. Int J Syst Evol Microbiol 2018; 68:358–363 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon J, Jo Y, Kim GJ, Choi H. Gramella lutea sp. nov., a novel species of the family Flavobacteriaceae isolated from marine sediment. Curr Microbiol 2015; 71:252–258 [View Article]
    [Google Scholar]
  24. Park S, Kim IK, Kim W, Yoon JH. Gramella sabulilitoris sp. nov., isolated from a marine sand. Int J Syst Evol Microbiol 2020; 70:909–914 [View Article] [PubMed]
    [Google Scholar]
  25. Jeong SH, Jin HM, Jeon CO. Gramella aestuarii sp. nov., isolated from a tidal flat, and emended description of Gramella echinicola. Int J Syst Evol Microbiol 2013; 63:2872–2878 [View Article] [PubMed]
    [Google Scholar]
  26. Park J-M, Park S, Won S-M, Jung Y-T, Shin K-S et al. Gramella aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2015; 65:1262–1267 [View Article] [PubMed]
    [Google Scholar]
  27. Hwang SH, Hwang WM, Kang K, Ahn TY. Gramella fulva sp. nov., isolated from a dry surface of tidal flat. J Microbiol 2019; 57:23–29 [View Article] [PubMed]
    [Google Scholar]
  28. Park S, Yoon SY, Jung YT, Won SM, Yoon JH. Gramella sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2704–2710 [View Article] [PubMed]
    [Google Scholar]
  29. Cho S-H, Chae S-H, Cho M, Kim T-U, Choi S et al. Gramella gaetbulicola sp. nov., a member of the family Flavobacteriaceae isolated from foreshore soil. Int J Syst Evol Microbiol 2011; 61:2654–2658 [View Article] [PubMed]
    [Google Scholar]
  30. Joung Y, Kim H, Jang T, Ahn TS, Joh K. Gramella jeungdoensis sp. nov., isolated from a solar saltern in Korea. J Microbiol 2011; 49:1022–1026 [View Article] [PubMed]
    [Google Scholar]
  31. Li Y, Ding Y-Y, Dang Y-R, Bai Y, Guan L et al. Celeribacter litoreus sp. nov., isolated from intertidal sediment. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  32. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998; 48 Pt 1:187–194 [View Article] [PubMed]
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  34. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  35. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  36. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  37. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol 1992; 9:945–967
    [Google Scholar]
  38. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  39. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  40. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [View Article] [PubMed]
    [Google Scholar]
  41. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  42. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article]
    [Google Scholar]
  43. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  44. Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 2010; 141:1241–1252 [View Article] [PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  46. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article] [PubMed]
    [Google Scholar]
  47. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  48. Coutinho PM, Deleury E, Davies GJ, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 2003; 328:307–317 [View Article] [PubMed]
    [Google Scholar]
  49. Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 2008; 77:521–555 [View Article] [PubMed]
    [Google Scholar]
  50. Flipphi MJ, Visser J, van der Veen P, de Graaff LH. Cloning of the Aspergillus niger gene encoding alpha-l-arabinofuranosidase A. Appl Microbiol Biotechnol 1993; 39:335–340 [View Article] [PubMed]
    [Google Scholar]
  51. Flipphi MJ, Panneman H, van der Veen P, Visser J, de Graaff LH. Molecular cloning, expression and structure of the endo-1,5-alpha-l-arabinase gene of Aspergillus niger. Appl Microbiol Biotechnol 1993; 40:318–326 [View Article] [PubMed]
    [Google Scholar]
  52. Shallom D, Leon M, Bravman T, Ben-David A, Zaide G et al. Biochemical characterization and identification of the catalytic residues of a family 43 beta-d-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 2005; 44:387–397 [View Article] [PubMed]
    [Google Scholar]
  53. He X-Y, Liu N-H, Lin C-Y, Sun M-L, Chen X-L et al. Description of Aureibaculum luteum sp. nov. and Aureibaculum flavum sp. nov. isolated from Antarctic intertidal sediments. Antonie van Leeuwenhoek 2022; 115:391–405 [View Article]
    [Google Scholar]
  54. Bauer M, Kube M, Teeling H, Richter M, Lombardot T et al. Whole genome analysis of the marine Bacteroidetes‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 2006; 8:2201–2213 [View Article]
    [Google Scholar]
  55. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  56. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  57. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci 2005; 102:2567–2572 [View Article]
    [Google Scholar]
  58. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article] [PubMed]
    [Google Scholar]
  59. Peterson WJ, Bell TA, Etchells JL, Smart WW Jr. A procedure for demonstrating the presence of carotenoid pigments in yeasts. J Bacteriol 1954; 67:708–713 [View Article] [PubMed]
    [Google Scholar]
  60. Bernardet JF, Bowman JP. The genus Flavobacterium. Prokaryotes 2006; 7:481–531
    [Google Scholar]
  61. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine-bacteria. Appl Environ Microbiol 1982; 44:992–993
    [Google Scholar]
  62. Smibert RM, Krieg NR. Methods for general and molecular bacteriology. In Gerhardt P, Murray RGE, WA W, Krieg NR. eds Phenotypic Characterization Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  63. Komagata K, Suzuki KI. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  64. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  65. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005621
Loading
/content/journal/ijsem/10.1099/ijsem.0.005621
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error