1887

Abstract

A Gram-stain-negative, non-motile and rod-shaped bacterium, designated as strain W52, was isolated from deep seawater of the Mariana Trench and characterized phylogenetically and phenotypically. The strain could grow at 10–47 °C (optimum 32 °C), at pH 5.0–8.0 (optimum 6.0) and with 0–9% NaCl (optimum 3 %, w/v). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that W52 was related to members of the genus and shared the highest identity with 501str8 (99.0 %), followed by JCM 11811, DSM 13258, 40DY170, KCTC 23501 and 12C25 with 97.0–98.8 % sequence similarity. 16S rRNA gene sequence identities between W52 and other members of the genus were below 97.0 %. The major respiratory quinone was MK-6. The polar lipids were phosphatidylethanolamine (PE), one unidentified aminolipid and three unidentified lipids. The strain had iso-C, iso-C 3-OH and iso-CG as the major fatty acids. The G+C content of the genomic DNA was 41.7 %. The combined genotypic and phenotypic data indicated that strain W52 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain W52 (=MCCC 1K05111= KCTC 82315).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 42073077)
    • Principle Award Recipient: YuliWei
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005615
2022-12-14
2024-04-20
Loading full text...

Full text loading...

References

  1. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article] [PubMed]
    [Google Scholar]
  2. Yoon J-H, Lee M-H, Oh T-K, Park Y-H. Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2005; 55:1015–1019 [View Article]
    [Google Scholar]
  3. Hwang CY, Kim MH, Bae GD, Zhang GI, Kim YH et al. Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2009; 59:1856–1861 [View Article] [PubMed]
    [Google Scholar]
  4. Gürtler V, Stanisich VA. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 1996; 142 (Pt 1):3–16 [View Article]
    [Google Scholar]
  5. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  6. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  7. Yang C, Li Y, Guo Q, Lai Q, Wei J et al. Muricauda zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013; 63:2320–2325 [View Article] [PubMed]
    [Google Scholar]
  8. Zhang X, Liu X, Lai Q, Du Y, Sun F et al. Muricauda indica sp. nov., isolated from deep sea water. Int J Syst Evol Microbiol 2018; 68:881–885 [View Article] [PubMed]
    [Google Scholar]
  9. Zhang Y, Gao Y, Pei J, Cao J, Xie Z et al. Muricauda hadalis sp. nov., a novel piezophile isolated from hadopelagic water of the Mariana Trench and reclassification of Muricauda antarctica as a later heterotypic synonym of Muricauda teanensis. Int J Syst Evol Microbiol 2020; 70:4315–4320 [View Article] [PubMed]
    [Google Scholar]
  10. Dong B, Zhu S, Chen T, Ren N, Chen X et al. Muricauda oceani sp. nov., isolated from the East Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:3839–3844 [View Article] [PubMed]
    [Google Scholar]
  11. Lee SY, Park S, Oh TK, Yoon JH. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1134–1139 [View Article] [PubMed]
    [Google Scholar]
  12. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  13. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  14. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  15. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  16. Wei Y, Fang J, Xu Y, Zhao W, Cao J. Corynebacterium hadale sp. nov. isolated from hadopelagic water of the New Britain Trench. Int J Syst Evol Microbiol 2018; 68:1474–1478 [View Article] [PubMed]
    [Google Scholar]
  17. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  18. Tindall B, Sikorski J, Smibert R, Krieg N. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. eds Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  19. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013; 63:2672–2677 [View Article] [PubMed]
    [Google Scholar]
  21. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  22. Wu Y-H, Yu P-S, Zhou Y-D, Xu L, Wang C-S et al. Muricauda antarctica sp. nov., a marine member of the Flavobacteriaceae isolated from Antarctic seawater. Int J Syst Evol Microbiol 2013; 63:3451–3456 [View Article]
    [Google Scholar]
  23. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005615
Loading
/content/journal/ijsem/10.1099/ijsem.0.005615
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error