1887

Abstract

Phytopathogenic bacterial strains (MAFF 301350, MAFF 302030 and MAFF 302046), isolated from lettuce ( var. ) with bacterial rot disease in Japan, were subjected to polyphasic characterization to determine their taxonomic affiliations. The cells were Gram-reaction-negative, aerobic, non-spore-forming, motile with polar flagella and rod-shaped. The results of similarity searches and phylogenetic analyses based on the 16S rRNA gene sequences, as well as the analysis results of the cellular fatty acid composition and genomic DNA G+C content indicated that these strains belong to the genus . Phylogenetic analyses using the gene sequences and phylogenomic analyses of the whole genome sequences grouped them into the group (MAFF 301350) and the group (MAFF 302030 and MAFF 302046), but the phylogenetic positions of the strains did not match those of any known species. The average nucleotide identity and digital DNA–DNA hybridization values between the strains and their closely related species were lower than the thresholds for prokaryotic species delineation (95–96 and 70 %, respectively). Phenotypic characteristics, pathogenicity toward lettuce, cellular fatty acid composition and whole-cell MALDI-TOF mass spectrometry profiles could differentiate the strains from their closest relatives. The phenotypic, chemotaxonomic and genotypic data obtained in this study showed that the strains represent two novel species of the genus , sp. nov. for MAFF 301350 and sp. nov. for MAFF 302030 and MAFF 302046. The respective type strains are MAFF 301350 (= ICMP 23989) and MAFF 302030 (= ICMP 24377).

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005599
2022-11-04
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/11/ijsem005599.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005599&mimeType=html&fmt=ahah

References

  1. Sawada H, Fujikawa T, Satou M. Pseudomonas aegrilactucae sp. nov. and Pseudomonas morbosilactucae sp. nov., pathogens causing bacterial rot of lettuce in Japan. Figshare 2022 [View Article]
    [Google Scholar]
  2. Tsuchiya Y, Ohata K, Iemura H, Sanematsu T, Shirata A et al. Identification of causal bacteria of head rot of lettuce. Bull Natl Inst Agric Sci C 1979; 33:77–99
    [Google Scholar]
  3. The Phytopathological Society of Japan Common Names of Plant Diseases in Japan. Tokyo, Japan: The Phytopathological Society of Japan; 2022 https://www.ppsj.org/pdf/mokuroku/mokuroku202202.pdf
  4. Sawada H, Fujikawa T, Satou M. Pseudomonas lactucae sp. nov., a pathogen causing bacterial rot of lettuce in Japan. Int J Syst Evol Microbiol 2021; 71:004917 [View Article]
    [Google Scholar]
  5. Girard L, Lood C, Höfte M, Vandamme P, Rokni-Zadeh H et al. The ever-expanding Pseudomonas genus: description of 43 new species and partition of the Pseudomonas putida group. Microorganisms 2021; 9:1766 [View Article]
    [Google Scholar]
  6. Rudra B, Gupta RS. Phylogenomic and comparative genomic analyses of species of the family Pseudomonadaceae: proposals for the genera Halopseudomonas gen. nov. and Atopomonas gen. nov., merger of the genus Oblitimonas with the genus Thiopseudomonas, and transfer of some misclassified species of the genus Pseudomonas into other genera. Int J Syst Evol Microbiol 2021; 71:005011 [View Article]
    [Google Scholar]
  7. Sawada H, Fujikawa T, Nishiwaki Y, Horita H. Pseudomonas kitaguniensis sp. nov., a pathogen causing bacterial rot of Welsh onion in Japan. Int J Syst Evol Microbiol 2020; 70:3018–3026 [View Article] [PubMed]
    [Google Scholar]
  8. Sawada H, Fujikawa T, Horita H. Pseudomonas brassicae sp. nov., a pathogen causing head rot of broccoli in Japan. Int J Syst Evol Microbiol 2020; 70:5319–5329 [View Article] [PubMed]
    [Google Scholar]
  9. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  10. Parte AC, Carbasse JS, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  11. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  12. Sawada H, Fujikawa T, Tsuji M, Satou M. Pseudomonas allii sp. nov.,a pathogen causing soft rot of onion in Japan. Int J Syst Evol Microbiol 2021; 71:004582 [View Article]
    [Google Scholar]
  13. Lalucat J, Mulet M, Gomila M, García-Valdés E. Genomics in bacterial taxonomy: impact on the genus Pseudomonas. Genes 2020; 11:139 [View Article]
    [Google Scholar]
  14. Lalucat J, Gomila M, Mulet M, Zaruma A, García-Valdés E. Past, present and future of the boundaries of the Pseudomonas genus: proposal of Stutzerimonas gen. nov. Syst Appl Microbiol 2022; 45:126289 [View Article]
    [Google Scholar]
  15. Sawada H, Fujikawa T, Osada S, Satou M. Pseudomonas petroselini sp. nov., a pathogen causing bacterial rot of parsley in Japan. Int J Syst Evol Microbiol 2022; 72:005424 [View Article] [PubMed]
    [Google Scholar]
  16. Tian L, Huang C, Mazloom R, Heath LS, Vinatzer BA. LINbase: a web server for genome-based identification of prokaryotes as members of crowdsourced taxa. Nucleic Acids Res 2020; 48:W529–W537 [View Article]
    [Google Scholar]
  17. Palleroni NJ. Pseudomonas. In Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 2 Boston: Springer; 2005 pp 323–379 [View Article]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  19. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Preprints 2016; 4:e1900v1 [View Article]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  23. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  24. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  25. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  26. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  28. Qin J, Hu Y, Wu W, Feng Y, Zong Z. Pseudomonas defluvii sp. nov., isolated from hospital sewage. Int J Syst Evol Microbiol 2020; 70:4199–4203 [View Article] [PubMed]
    [Google Scholar]
  29. Schaad NW, Jones JB, Chun W. eds Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd edn. St. Paul, MN, USA: APS Press; 2001
    [Google Scholar]
  30. Lelliott RA, Billing E, Hayward AC. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 1966; 29:470–489 [View Article] [PubMed]
    [Google Scholar]
  31. Sawada H, Horita H, Misawa T, Takikawa Y. Pseudomonas grimontii, causal agent of turnip bacterial rot disease in Japan. J Gen Plant Pathol 2019; 85:413–423 [View Article]
    [Google Scholar]
  32. Tsuchiya Y, Ohata K, Shirata A. Pathogenicity of the causal bacteria of head rot of lettuce, Pseudomonas cichorii, P. marginalis and P. viridiflava, to various crop plants. Bull Natl Inst Agric Sci C 1980; 34:51–73
    [Google Scholar]
  33. Wang M-Q, Wang Z, Yu L-N, Zhang C-S, Bi J et al. Pseudomonas qingdaonensis sp. nov., an aflatoxin-degrading bacterium, isolated from peanut rhizospheric soil. Arch Microbiol 2019; 201:673–678 [View Article] [PubMed]
    [Google Scholar]
  34. Qin J, Feng Y, X, Zong Z. Pseudomonas huaxiensis sp. nov., isolated from hospital sewage. Int J Syst Evol Microbiol 2019; 69:3281–3286 [View Article] [PubMed]
    [Google Scholar]
  35. Sawada H, Fujikawa T, Osada S, Satou M. Pseudomonas cyclaminis sp. nov., a pathogen causing bacterial bud blight of cyclamen in Japan. Int J Syst Evol Microbiol 2021; 71:004723 [View Article]
    [Google Scholar]
  36. Duman M, Mulet M, Saticioglu IB, Altun S, Gomila M et al. Pseudomonas sivasensis sp. nov. isolated from farm fisheries in Turkey. Syst Appl Microbiol 2020; 43:126103 [View Article] [PubMed]
    [Google Scholar]
  37. Duman M, Mulet M, Altun S, Saticioglu IB, Gomila M et al. Pseudomonas piscium sp. nov., Pseudomonas pisciculturae sp. nov., Pseudomonas mucoides sp. nov. and Pseudomonas neuropathica sp. nov. isolated from rainbow trout. Int J Syst Evol Microbiol 2021; 71:004714 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005599
Loading
/content/journal/ijsem/10.1099/ijsem.0.005599
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error