1887

Abstract

A salt-tolerant bacterium, designated strain EGI L200015, was isolated from saline lake sediment in Xinjiang Uygur Autonomous Region, PR China. The taxonomic position of the isolate was determined using polyphasic taxonomic analysis and phylogenomic analysis. Phylogenetic analysis and 16S rRNA gene sequence similarities indicated that EGI L200015 formed a distinct clade with KCTC 12718 with sequence identity of 98.3%. The novel isolate could be distinguished from species of the genus by its distinct phenotypic, physiological and genotypic characteristics. Cells of EGI L200015 were aerobic, Gram-stain-positive, non-motile and rod-shaped. Optimal growth conditions for EGI L200015 occurred on marine agar 2216 at pH 8.0 at 30 °C. The major respiratory quinone was MK-7, while the major fatty acids (> 10 %) were anteiso-C, iso-C, iso-C and anteiso-C. The detected polar lipids of included diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. On the basis of the genome sequence data, the DNA G+C content of EGI L200015 was 41.6 %. On the basis of the phenotypic, physiological, genotypic and phylogenetic data, strain EGI L200015 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of the proposed novel isolate is EGI L200015 (= KCTC 43363 = CGMCC 1.19260).

Funding
This study was supported by the:
  • Xinjiang Uygur Autonomous Region regional coordinated innovation project (Award 2021E01018)
    • Principle Award Recipient: Wen-JunLi
  • Science and Technology Department of Xinjiang Uygur Autonomous Region (Award 2020E01047)
    • Principle Award Recipient: Wen-JunLi
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2019FY100701)
    • Principle Award Recipient: Bao-ZhuFang
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2021FY100900)
    • Principle Award Recipient: Bao-ZhuFang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005597
2022-10-25
2024-04-18
Loading full text...

Full text loading...

References

  1. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article]
    [Google Scholar]
  2. Joshi A, Thite S, Karodi P, Joseph N, Lodha T. Alkalihalobacterium elongatum gen. nov. sp. nov.: an antibiotic-producing bacterium isolated from Lonar Lake and reclassification of the genus Alkalihalobacillus Into seven novel genera. Front Microbiol 2021; 12:722369 [View Article]
    [Google Scholar]
  3. Nedashkovskaya OI, Van Trappen S, Frolova GM, De Vos P. Bacillus berkeleyi sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Arch Microbiol 2012; 194:215–221 [View Article] [PubMed]
    [Google Scholar]
  4. Ivanova EP, Alexeeva YA, Zhukova NV, Gorshkova NM, Buljan V et al. Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens. Syst Appl Microbiol 2004; 27:301–307 [View Article] [PubMed]
    [Google Scholar]
  5. Mo K, Huang H, Bao S, Hu Y. Bacillus caeni sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2020; 70:1503–1507 [View Article] [PubMed]
    [Google Scholar]
  6. Heyrman J, Balcaen A, Rodriguez-Diaz M, Logan NA, Swings J et al. Bacillus decolorationis sp. nov., isolated from biodeteriorated parts of the mural paintings at the Servilia Tomb (Roman necropolis of Carmona, Spain) and the Saint-Catherine Chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 2003; 53:459–463 [View Article]
    [Google Scholar]
  7. Chen Y-G, Zhang Y-Q, He J-W, Klenk H-P, Xiao J-Q et al. Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin. Int J Syst Evol Microbiol 2011; 61:2950–2955 [View Article] [PubMed]
    [Google Scholar]
  8. Santini JM, Streimann ICA, Hoven RNV. Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Int J Syst Evol Microbiol 2004; 54:2241–2244 [View Article] [PubMed]
    [Google Scholar]
  9. Liu Y, Beer LL, Whitman WB. Sulfur metabolism in archaea reveals novel processes. Environ Microbiol 2012; 14:2632–2644 [View Article] [PubMed]
    [Google Scholar]
  10. Guan TW, Lin YJ, Ou MY, Chen KB. Isolation and diversity of sediment bacteria in the hypersaline aiding lake, China. PLoS One 2020; 15:e0236006 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang L, Shen T, Cheng Y, Zhao T, Li L et al. Temporal and spatial variations in the bacterial community composition in Lake Bosten, a large, brackish lake in China. Sci Rep 2020; 10:304 [View Article]
    [Google Scholar]
  12. Darabpour E, Roayaei Ardakani M, Motamedi H, Taghi Ronagh M. Isolation of a potent antibiotic producer bacterium, especially against MRSA, from northern region of the Persian Gulf. Bosn J Basic Med Sci 2012; 12:108–121 [View Article] [PubMed]
    [Google Scholar]
  13. Sali W, Patoli D, Pais de Barros J-P, Labbé J, Deckert V et al. Polysaccharide chain length of Lipopolysaccharides from Salmonella Minnesota is a determinant of aggregate stability, plasma residence time and proinflammatory propensity in vivo. Front Microbiol 2019; 10:1774 [View Article]
    [Google Scholar]
  14. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  15. Jacobs JM, Pesce C, Lefeuvre P, Koebnik R. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. Front Plant Sci 2015; 6:431 [View Article]
    [Google Scholar]
  16. Liu Z-T, Jiao J-Y, Liu L, Li M-M, Ming Y-Z et al. Rhabdothermincola sediminis gen. nov., sp. nov., a new actinobacterium isolated from hot spring sediment, and emended description of the family Iamiaceae. Int J Syst Evol Microbiol 2019; 71: [View Article]
    [Google Scholar]
  17. Fang B-Z, Xie Y-G, Zhou X-K, Zhang X-T, Liu L et al. Lysobacter prati sp. nov., isolated from a plateau meadow sample. Antonie Van Leeuwenhoek 2020; 113:763–772 [View Article] [PubMed]
    [Google Scholar]
  18. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43:805–812 [View Article]
    [Google Scholar]
  19. Kurup PV, Schmitt JA. Numerical taxonomy of Nocardia. Can J Microbiol 1973; 19:1035–1048 [View Article]
    [Google Scholar]
  20. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  21. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  22. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article]
    [Google Scholar]
  23. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  24. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  25. Yin L-Z, Liu Z-T, Li J-L, Wang P-D, Dong L et al. Agilicoccus flavus gen. nov., sp. nov., a novel member of the family Dermatophilaceae isolated from the Pearl River. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  26. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  27. Fang B-Z, Han M-X, Jiao J-Y, Xie Y-G, Zhang X-T et al. Streptomyces cavernae sp. nov., a novel actinobacterium isolated from a karst cave sediment sample. Int J Syst Evol Microbiol 2020; 70:120–125 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  29. Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2018; 46:D8–D13 [View Article] [PubMed]
    [Google Scholar]
  30. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  32. Kannan L, Wheeler WC. Maximum parsimony on phylogenetic networks. Algorithms Mol Biol 2012; 7:9 [View Article] [PubMed]
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  34. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  35. Efron B, Halloran E, Holmes S. Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci U S A 1996; 93:7085–7090 [View Article] [PubMed]
    [Google Scholar]
  36. Joshi NA, Fass JN. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). [Software]; 2011 https://github.com/najoshi /sickle
  37. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  38. Galperin MY, Kristensen DM, Makarova KS, Wolf YI, Koonin EV. Microbial genome analysis: the COG approach. Brief Bioinform 2019; 20:1063–1070 [View Article] [PubMed]
    [Google Scholar]
  39. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–62 [View Article] [PubMed]
    [Google Scholar]
  40. Liu H, Xin B, Zheng J, Zhong H, Yu Y et al. Build a bioinformatic analysis platform and apply it to routine analysis of microbial genomics and comparative genomics. Protocol Exchange 2021 [View Article]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  43. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article]
    [Google Scholar]
  44. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020; 36:1925–1927 [View Article]
    [Google Scholar]
  45. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  46. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005597
Loading
/content/journal/ijsem/10.1099/ijsem.0.005597
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error