1887

Abstract

A bacterial strain, designated S8-55, was isolated from moraine samples collected from the north slope of Mount Everest at an altitude of 5 500 m above sea level. The purpose of this study was to describe a novel species and its characteristics, through genome sequencing and analysis of the relationship between the members of the genus , and explore the antioxidant capacity of strain S8-55. The polyphasic study confirmed the affiliation of strain S8-55 with the genus . Strain S8-55 was aerobic, Gram-negative and oxidase- and catalase positive. Cells were orange-pigmented, ellipsoid and had no spore formation, no flagella and no motility. Strain S8-55 grow at 10–37 °C, pH 7–11 and without NaCl. Ubiquinone 10 was its predominant respiratory menaquinone. The polar lipids of strain S8-55 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid, an unidentified aminolipid and three unidentified lipids. Its major fatty acids were summed feature 8 (C 7 and/or C 6). The G+C content was 64.3 mol%. The phylogenetic analysis based on the 16S rRNA sequence showed that strain S8-55 was closely related to E6 (97.9 %), 011410 (97.9 %) and THG-T2.8 (97.8 %). The average nucleotide identity values among strain S8-55 and CCTCC AB 2015056, KCTC 42845 and CCTCC AB 2016181 were 84.1, 84.5 and 76.3 %, respectively. The genome of strain S8-55 contained antioxidant genes such as , , , and . Based on its morphological, physiological and chemical taxonomic characteristics, strain S8-55 (=JCM 35 227=GDMCC 1.3026) should be classified as a novel species of the genus with the proposed name sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005562
2022-09-21
2024-03-29
Loading full text...

Full text loading...

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969; 19:375–390 [View Article]
    [Google Scholar]
  2. Liu Z-P, Wang B-J, Liu X-Y, Dai X, Liu Y-H et al. Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 2008; 58:257–261 [View Article] [PubMed]
    [Google Scholar]
  3. Ludwig W, Mittenhuber G, Friedrich CG. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 1993; 43:363–367 [View Article]
    [Google Scholar]
  4. Katayama Y, Hiraishi A, Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 1995; 141 (Pt 6):1469–1477 [View Article]
    [Google Scholar]
  5. Gutierrez-Patricio S, Gonzalez-Pimentel JL, Miller AZ, Hermosin B, Saiz-Jimenez C et al. Paracoccus onubensis sp. nov., a novel alphaproteobacterium isolated from the wall of a show cave. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  6. Zhang Y-X, Li X, Li F-L, Ma S-C, Zheng G-D et al. Paracoccus alkanivorans sp. nov., isolated from a deep well with oil reservoir water. Int J Syst Evol Microbiol 2020; 70:2312–2317 [View Article] [PubMed]
    [Google Scholar]
  7. Rai A, N S, G S, A S, G D et al. Paracoccus aeridis sp. nov., an indole-producing bacterium isolated from the rhizosphere of an orchid, Aerides maculosa. Int J Syst Evol Microbiol 2020; 70:1720–1728 [View Article]
    [Google Scholar]
  8. Kämpfer P, Busse H-J, Galatis H, Criscuolo A, Clermont D et al. Paracoccus haematequi sp. nov., isolated from horse blood. Int J Syst Evol Microbiol 2019; 69:1682–1688 [View Article] [PubMed]
    [Google Scholar]
  9. Kim B-Y, Weon H-Y, Yoo S-H, Kwon S-W, Cho Y-H et al. Paracoccus homiensis sp. nov., isolated from a sea-sand sample. Int J Syst Evol Microbiol 2006; 56:2387–2390 [View Article] [PubMed]
    [Google Scholar]
  10. Dastager SG, Deepa CK, Li WJ, Tang SK, Pandey A. Paracoccus niistensis sp. nov., isolated from forest soil, India. Antonie Van Leeuwenhoek 2011; 99:501–506 [View Article] [PubMed]
    [Google Scholar]
  11. Deng Z-S, Zhao L-F, Xu L, Kong Z-Y, Zhao P et al. Paracoccus sphaerophysae sp. nov., a siderophore-producing, endophytic bacterium isolated from root nodules of Sphaerophysa salsula. Int J Syst Evol Microbiol 2011; 61:665–669 [View Article] [PubMed]
    [Google Scholar]
  12. Lee M, Woo SG, Park G, Kim MK. Paracoccus caeni sp. nov., isolated from sludge. Int J Syst Evol Microbiol 2011; 61:1968–1972 [View Article] [PubMed]
    [Google Scholar]
  13. Park S, Yoon SY, Jung Y-T, Won S-M, Park D-S et al. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2992–2998 [View Article] [PubMed]
    [Google Scholar]
  14. Chen WM, Li YS, Young CC, Sheu SY. Paracoccus mangrovi sp. nov., isolated from a mangrove. Int J Syst Evol Microbiol 2017; 67:2689–2695 [View Article] [PubMed]
    [Google Scholar]
  15. Heo J, Cho H-Y, Kim J-S, Hong S-B, Kwon S-W et al. Paracoccus suum sp. nov., isolated from a pig farm dust collector. Int J Syst Evol Microbiol 2019; 69:970–974 [View Article] [PubMed]
    [Google Scholar]
  16. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:3469–3475 [View Article] [PubMed]
    [Google Scholar]
  17. Berry A, Janssens D, Hümbelin M, Jore JPM, Hoste B et al. Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 2003; 53:231–238 [View Article] [PubMed]
    [Google Scholar]
  18. Kämpfer P, Lai W-A, Arun AB, Young C-C, Rekha PD et al. Paracoccus rhizosphaerae sp. nov., isolated from the rhizosphere of the plant Crossostephium chinense (L.) Makino (Seremban). Int J Syst Evol Microbiol 2012; 62:2750–2756 [View Article] [PubMed]
    [Google Scholar]
  19. Xue H, Piao CG, Guo MW, Wang LF, Li Y. Paracoccus aerius sp. nov., isolated from air. Int J Syst Evol Microbiol 2017; 67:2586–2591 [View Article] [PubMed]
    [Google Scholar]
  20. Yan Z-F, Moya G, Lin P, Won K-H, Yang J-E et al. Paracoccus hibisci sp. nov., isolated from the rhizosphere of Hibiscus syriacus L. (Mugunghwa flower). Int J Syst Evol Microbiol 2017; 67:1849–1854 [View Article]
    [Google Scholar]
  21. Lieberman P, Morey A, Hochstadt J, Larson M, Mather S. Mount Everest: a space analogue for speech monitoring of cognitive deficits and stress. Aviat Space Environ Med 2005; 76:B198–207 [PubMed]
    [Google Scholar]
  22. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [View Article] [PubMed]
    [Google Scholar]
  23. Luo R, Liu B, Xie Y et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  24. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  25. Zhou L, Yu H, Wang K, Chen T, Ma Y et al. Genome re-sequencing and reannotation of the Escherichia coli ER2566 strain and transcriptome sequencing under overexpression conditions. BMC Genomics 2020; 21:407 [View Article]
    [Google Scholar]
  26. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  28. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article]
    [Google Scholar]
  29. Nishimaki T, Sato K. An extension of the Kimura two-parameter model to the natural evolutionary process. J Mol Evol 2019; 87:60–67 [View Article]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  33. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  34. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  36. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  37. Rodríguez-R L, Konstantinidis K. Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Magazine 2014; 9:111–118
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  39. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  40. Molina-Menor E, Gimeno-Valero H, Pascual J, Peretó J, Porcar M. High culturable bacterial diversity from a European Desert: the Tabernas Desert. Front Microbiol 2020; 11:583120 [View Article]
    [Google Scholar]
  41. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  42. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  43. Wayne L.G. International Committee on Systematic Bacteriology announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. J Appl Bacteriol 1988; 64:283–284 [View Article]
    [Google Scholar]
  44. Storz G, Tartaglia LA. OxyR: a regulator of antioxidant genes. J Nutr 1992; 122:627–630 [View Article] [PubMed]
    [Google Scholar]
  45. Zhou Q, Zhang X, Xu H, Xu B, Hua Y. A new role of Deinococcus radiodurans RecD in antioxidant pathway. FEMS Microbiol Lett 2007; 271:118–125 [View Article] [PubMed]
    [Google Scholar]
  46. Liu Y, Chen T, Cui X, Xu Y, Hu S et al. Sphingomonas radiodurans sp. nov., a novel radiation-resistant bacterium isolated from the north slope of Mount Everest. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  47. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article] [PubMed]
    [Google Scholar]
  48. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  49. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  50. Cappuccino JGS N. Microbiology: a Laboratory Manual, 6th edn. Menlo Park, CA: Benjamin/Cummings; 2002
    [Google Scholar]
  51. Kurup PV, Schmitt JA. Numerical taxonomy of Nocardia. Can J Microbiol 1973; 19:1035–1048 [View Article] [PubMed]
    [Google Scholar]
  52. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  53. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  54. Sasser M. MIDI technical note 101. Identification of bacteria by gas chromatography of cellular fatty acids Newark: MIDI; 1990
    [Google Scholar]
  55. Liu Y, Chen T, Li J, Wu M, Liu G et al. High proportions of radiation-resistant strains in culturable bacteria from the Taklimakan Desert. Biology 2022; 11:501 [View Article]
    [Google Scholar]
  56. Yang L, Xinyue W, Tuo C, Gaosen Z, Fasi W et al. The diversity of culturable bacteria in the eastern edge of Kumtag desert, and the characteristic of their radiation-resistance and anti-oxidation, including the correlation and coupling of these capacities. China Environ Sci 2021; 41:12
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005562
Loading
/content/journal/ijsem/10.1099/ijsem.0.005562
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error