1887

Abstract

Three bacterial strains (Red232, Red267 and Red630) were isolated from paddy soils sampled in Japan. Cells of these strains were Gram-stain-negative, facultative anaerobic, long rod-shaped with monotrichous flagella or pilus-like structures for motility, and formed red colonies on agar plates. Phylogenetic trees based on 16S rRNA gene and multiple single-copy gene sequences showed that the three strains formed a cluster with the type strains of species, independent from any other strain genera. Similarity values of the 16S rRNA gene sequences and genomes among the three isolated strains and the type strain of , 2CP-1, were 95.4–97.4% for 16S rRNA gene sequence, 75.3–79.5% for average nucleotide identity, 19.6–21.7% for digital DNA–DNA hybridization and 64.1–72.6% for average amino acid identity, all of which are below the species delineation thresholds. Nitrogenase genes were observed in the genomes of the three novel strains, but not in 2CP-1. Moreover, multiple genomic, physiological and chemotaxonomic features supported the discrimination between these three strains. Based on the evidence in this study, the three isolates represent three novel independent species for which the following names are proposed: sp. nov., sp. nov. and sp. nov. The type strains are Red232 (=NBRC 114074=MCCC 1K03954), Red267 (=NBRC 114075=MCCC 1K04211), and Red630 (=NBRC 114076=MCCC 1K03957), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005546
2022-10-03
2024-04-13
Loading full text...

Full text loading...

References

  1. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972–6016 [View Article] [PubMed]
    [Google Scholar]
  2. Sanford RA, Cole JR, Tiedje JM. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 2002; 68:893–900 [View Article]
    [Google Scholar]
  3. Treude N, Rosencrantz D, Liesack W, Schnell S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol 2003; 44:261–269 [View Article] [PubMed]
    [Google Scholar]
  4. Masuda Y, Yamanaka H, Xu Z, Shiratori Y, Aono T et al. Diazotrophic Anaeromyxobacter isolated from soils. Appl Environ Microbiol 2020; 86:e00956–20 [View Article]
    [Google Scholar]
  5. Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K et al. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol 2013; 79:4635–4642 [View Article]
    [Google Scholar]
  6. Thomas SH, Padilla-Crespo E, Jardine PM, Sanford RA, Löffler FE. Diversity and distribution of Anaeromyxobacter strains in a uranium-contaminated subsurface environment with a nonuniform groundwater flow. Appl Environ Microbiol 2009; 75:3679–3687 [View Article] [PubMed]
    [Google Scholar]
  7. Hwang C, Copeland A, Lucas S, Lapidus A, Barry K et al. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an anaerobic, metal-reducing bacterium isolated from a contaminated subsurface environment. Genome Announc 2015; 3:e01449-14 [View Article]
    [Google Scholar]
  8. Orellana LH, Rodriguez-R LM, Higgins S, Chee-Sanford JC, Sanford RA et al. Detecting nitrous oxide reductase (NosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. mBio 2014; 5:e01193–14 [View Article]
    [Google Scholar]
  9. Nelson MB, Martiny AC, Martiny JBH. Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci USA 2016; 113:8033–8040 [View Article]
    [Google Scholar]
  10. Babin D, Deubel A, Jacquiod S, Sørensen SJ, Geistlinger J et al. Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biol Biochem 2019; 129:17–28 [View Article]
    [Google Scholar]
  11. Lacerda-Júnior GV, Noronha MF, Cabral L, Delforno TP, de Sousa STP et al. Land use and seasonal effects on the soil microbiome of a Brazilian dry forest. Front Microbiol 2019; 10:648 [View Article]
    [Google Scholar]
  12. Masuda Y, Itoh H, Shiratori Y, Isobe K, Otsuka S et al. Predominant but previously-overlooked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics. Microbes Environ 2017; 32:180–183 [View Article]
    [Google Scholar]
  13. Masuda Y, Itoh H, Shiratori Y, Senoo K. Metatranscriptomic insights into microbial consortia driving methane metabolism in paddy soils. Soil Sci Plant Nutr 2018; 64:455–464 [View Article]
    [Google Scholar]
  14. Wu Q, Sanford RA, Löffler FE. Uranium(VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C. Appl Environ Microbiol 2006; 72:3608–3614 [View Article] [PubMed]
    [Google Scholar]
  15. Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci USA 2012; 109:19709–19714 [View Article]
    [Google Scholar]
  16. Onley JR, Ahsan S, Sanford RA, Löffler FE. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite Reductase genes nirS and nirK. Appl Environ Microbiol 2018; 84:e01985-17 [View Article]
    [Google Scholar]
  17. Wang K, Jia R, Li L, Jiang R, Qu D. Community structure of Anaeromyxobacter in Fe(III) reducing enriched cultures of paddy soils. J Soils Sediments 2020; 20:1621–1631 [View Article]
    [Google Scholar]
  18. Ding LJ, Su JQ, Xu HJ, Jia ZJ, Zhu YG. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-(13)C-acetate probing coupled with pyrosequencing. ISME J 2015; 9:721–734 [View Article] [PubMed]
    [Google Scholar]
  19. Kim Y, Liesack W. Differential assemblage of functional units in paddy soil microbiomes. PLoS One 2015; 10:e0122221 [View Article]
    [Google Scholar]
  20. Xu Z, Masuda Y, Itoh H, Ushijima N, Shiratori Y et al. Geomonas oryzae gen. nov., sp. nov., Geomonas edaphica sp. nov., Geomonas ferrireducens sp. nov., Geomonas terrae sp. nov., four ferric-reducing bacteria isolated from paddy soil, and reclassification of three species of the genus Geobacter as members of the genus Geomonas gen. nov. Front Microbiol 2019; 10:2201 [View Article]
    [Google Scholar]
  21. Xu Z, Masuda Y, Hayakawa C, Ushijima N, Kawano K et al. Description of three novel members in the family Geobacteraceae, Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. Microorganisms 2020; 8:634 [View Article]
    [Google Scholar]
  22. Zhang Z, Xu Z, Masuda Y, Wang X, Ushijima N et al. Geomesophilobacter sediminis gen. nov., sp. nov., Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., three novel members in the family Geobacterecace isolated from river sediment and paddy soil. Syst Appl Microbiol 2021; 44:126233 [View Article]
    [Google Scholar]
  23. Xu Z, Masuda Y, Wang X, Ushijima N, Shiratori Y et al. Genome-based taxonomic rearrangement of the order Geobacterales including the description of Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov. Front Microbiol 2021; 12:737531 [View Article]
    [Google Scholar]
  24. Itoh H, Xu Z, Masuda Y, Ushijima N, Hayakawa C et al. Geomonas silvestris sp. nov., Geomonas paludis sp. nov. and Geomonas limicola sp. nov., isolated from terrestrial environments, and emended description of the genus Geomonas. Int J Syst Evol Microbiol 2021; 71:004607 [View Article]
    [Google Scholar]
  25. Itoh H, Kawano K, Kihara M. Draft genome sequence of Agarivorans sp. strain Toyoura001, isolated from an abalone gut. Microbiol Resour Announc 2019; 8:e00169–00119 [View Article]
    [Google Scholar]
  26. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  27. Kawano K, Ushijima N, Kihara M, Itoh H. Patiriisocius marinistellae gen. nov., sp. nov., isolated from the starfish Patiria pectinifera, and reclassification of Ulvibacter marinus as a member of the genus Patiriisocius comb. nov. Int J Syst Evol Microbiol 2020; 70:4119–4129 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  29. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database roject: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–42 [View Article]
    [Google Scholar]
  30. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  31. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  32. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  34. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  35. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  36. Seeman T. barrnap: bacterial ribosomal RNA predictor (0.9-2); 2018 https://github.com/tseemann/barrnap
  37. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  38. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article] [PubMed]
    [Google Scholar]
  39. Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR et al. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS One 2008; 3:e2103 [View Article]
    [Google Scholar]
  40. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome equences. J Mol Biol 2016; 428:726–731 [View Article]
    [Google Scholar]
  41. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992; 8:275–282 [View Article]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  44. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36:1925–1927 [View Article]
    [Google Scholar]
  45. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article]
    [Google Scholar]
  46. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article]
    [Google Scholar]
  47. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article] [PubMed]
    [Google Scholar]
  48. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001; 18:691–699 [View Article] [PubMed]
    [Google Scholar]
  49. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article]
    [Google Scholar]
  50. Welsh A, Chee-Sanford JC, Connor LM, Löffler FE, Sanford RA. Refined NrfA phylogeny improves PCR-based nrfA gene detection. Appl Environ Microbiol 2014; 80:2110–2119 [View Article] [PubMed]
    [Google Scholar]
  51. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  52. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  53. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article]
    [Google Scholar]
  54. Thomas SH, Sanford RA, Amos BK, Leigh MB, Cardenas E et al. Unique ecophysiology among U(VI)-reducing bacteria as revealed by evaluation of oxygen metabolism in Anaeromyxobacter dehalogenans strain 2CP-C. Appl Environ Microbiol 2010; 76:176–183 [View Article] [PubMed]
    [Google Scholar]
  55. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty cids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  56. Gunina A, Dippold MA, Glaser B, Kuzyakov Y. Fate of low molecular weight organic substances in an arable soil: from microbial uptake to utilisation and stabilisation. Soil Biol Biochem 2014; 77:304–313 [View Article]
    [Google Scholar]
  57. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  58. Mise K, Iwasaki W. Environmental atlas of Prokaryotes enables powerful and intuitive habitat-based analysis of community tructures. iScience 2020; 23:101624 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005546
Loading
/content/journal/ijsem/10.1099/ijsem.0.005546
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error