1887

Abstract

The strains of exhibit considerable differences in their genotypic and pathogenic properties. To clarify their evolutionary/taxonomic relationships, comprehensive phylogenomic and comparative genomic studies were conducted on the genome sequences of 212 . strains covering their genetic diversity. In a phylogenomic tree based on 118 conserved proteins, the analysed strains formed two distinct clades. One of these clades, Clade-1, encompassing >70 % of the strains including the type strain DSM 50071, represents the species . Clade-2, referred to in earlier work as the outlier group, with NCTC 13628 as its type strain, constitutes a novel species level lineage. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the strains from Clade-1 and Clade-2 are in the range of 93.4–93.7, 95.1–95.3 and 52–53 %, respectively. The 16S rRNA gene of DSM 50071 also shows 98.3 % similarity to that of NCTC 13628. These values are lower than the suggested cut-off values for species distinction, indicating that the Clade-2 strains (NCTC 13628) constitute a new species. We also report the identification of 12 conserved signature indels in different proteins and 24 conserved signature proteins that are exclusively found in either Clade-1 or Clade-2, providing a reliable means for distinguishing these clades. Additionally, in contrast to swimming motility, twitching motility is only present in Clade-1 strains. Based on earlier work, the strains from these two clades also differ in their pathogenic mechanisms (presence/absence of Type III secretion system), production of biosurfactants, phenazines and siderophores, and several other genomic characteristics. Based on the evidence from different studies, we propose that the Clade-2 strains constitute a novel species for which the name is proposed. The type strain is NCTC 13628 (=PA7=ATCC 9027). The description of is also emended to include information for different molecular markers specific for this species.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005542
2022-11-09
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/11/ijsem005542.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005542&mimeType=html&fmt=ahah

References

  1. Rudra BD L, Duncan L, Shah AJ, Shah HN, Gupta RS. Phylogenomic and comparative genomic studies robustly demarcate two distinct clades of Pseudomonas aeruginosa strains: proposal to transfer the strains from an outlier clade to a novel species Pseudomonas paraeruginosa sp. nov. Figshare 2022 [View Article]
    [Google Scholar]
  2. Peix A, Ramírez-Bahena M-H, Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 2009; 9:1132–1147 [View Article]
    [Google Scholar]
  3. Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. Pseudomonas John Wiley and Sons in Association with Bergey’s Manual Trust; 2015 pp 1–105 [View Article]
    [Google Scholar]
  4. Schroeter J. Über einige durch Bacterien gebildete Pigmente. In Cohn F. eds Beiträge Zur Biologie Der Pflanzen Breslau: Max Müller; 1872 pp 109–126
    [Google Scholar]
  5. Migula W. Uber ein neues system der bakterien. Arb Bakt Inst Kar1sruhe 18941
    [Google Scholar]
  6. Sneath PHA, McGowan V, Skerman VBD. Approved lists of bacterial ames. Int J Syst Bacteriol 1980; 30:225–420 [View Article]
    [Google Scholar]
  7. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959–964 [View Article]
    [Google Scholar]
  8. Planquette B, Timsit J-F, Misset BY, Schwebel C, Azoulay E et al. Pseudomonas aeruginosa ventilator-associated Pneumonia. predictive factors of treatment failure. Am J Respir Crit Care Med 2013; 188:69–76 [View Article]
    [Google Scholar]
  9. Castañeda-Montes FJ, Avitia M, Sepúlveda-Robles O, Cruz-Sánchez V, Kameyama L et al. Population structure of Pseudomonas aeruginosa through a MLST approach and antibiotic resistance profiling of a Mexican clinical collection. Infect Genet Evol 2018; 65:43–54 [View Article]
    [Google Scholar]
  10. Gad GF, El-Domany RA, Zaki S, Ashour HM. Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. J Antimicrob Chemother 2007; 60:1010–1017 [View Article]
    [Google Scholar]
  11. Kouda S, Ohara M, Onodera M, Fujiue Y, Sasaki M et al. Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J Antimicrob Chemother 2009; 64:46–51 [View Article]
    [Google Scholar]
  12. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 2016; 44:D646–53 [View Article]
    [Google Scholar]
  13. Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K et al. Database resources of the national center for biotechnology nformation. Nucleic Acids Res 2019; 47:D23–D28 [View Article]
    [Google Scholar]
  14. Toska J, Sun Y, Carbonell DA, Foster AN-S, Jacobs MR et al. Diversity of virulence phenotypes among type III secretion negative Pseudomonas aeruginosa clinical isolates. PLoS One 2014; 9:e86829 [View Article]
    [Google Scholar]
  15. Freschi L, Bertelli C, Jeukens J, Moore MP, Kukavica-Ibrulj I et al. Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiol Lett 2018; 365:14 [View Article]
    [Google Scholar]
  16. Basso P, Ragno M, Elsen S, Reboud E, Golovkine G et al. Pseudomonas aeruginosa pore-forming exolysin and Type IV Pili cooperate to induce host cell lysis. mBio 2017; 8:e02250-16 [View Article]
    [Google Scholar]
  17. Brzozowski M, Jursa-Kulesza JB, Kosik-Bogacka D. Virulence analysis of 81 of Pseudomonas aeruginosa genomes available in public sequence databases. In Review 2019 [View Article]
    [Google Scholar]
  18. García-Reyes S, Soto-Aceves MP, Cocotl-Yañez M, González-Valdez A, Servín-González L et al. The outlier Pseudomonas aeruginosa strain ATCC 9027 harbors a defective LasR quorum-sensing transcriptional regulator. FEMS Microbiol Lett 2020; 367:16 [View Article]
    [Google Scholar]
  19. García-Reyes S, Soberón-Chávez G, Cocotl-Yanez M. The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein. J Med Microbiol 2020; 69:25–34 [View Article] [PubMed]
    [Google Scholar]
  20. Sood U, Hira P, Kumar R, Bajaj A, Rao DLN et al. Comparative genomic analyses reveal core-genome-wide genes under positive selection and major regulatory hubs in outlier strains of Pseudomonas aeruginosa. Front Microbiol 2019; 10:53 [View Article]
    [Google Scholar]
  21. Zhang Z, Zhang X. Evolution of subfamily I.1 lipases in Pseudomonas aeruginosa. Curr Microbiol 2021; 78:3494–3504 [View Article]
    [Google Scholar]
  22. Ozer EA, Nnah E, Didelot X, Whitaker RJ, Hauser AR. The population structure of Pseudomonas aeruginosa Is characterized by genetic isolation of exoU+ and exoS+ Lineages. Genome Biol Evol 2019; 11:1780–1796 [View Article]
    [Google Scholar]
  23. Sood U, Singh DN, Hira P, Lee J-K, Kalia VC et al. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. J Biotechnol 2020; 307:98–106 [View Article]
    [Google Scholar]
  24. Elsen S, Huber P, Bouillot S, Couté Y, Fournier P et al. A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic Pneumonia. Cell Host Microbe 2014; 15:164–176 [View Article] [PubMed]
    [Google Scholar]
  25. Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S et al. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 2010; 5:e8842 [View Article]
    [Google Scholar]
  26. García-Ulloa M, Ponce-Soto G-Y, González-Valdez A, González-Pedrajo B, Díaz-Guerrero M et al. Two Pseudomonas aeruginosa clonal groups belonging to the PA14 clade are indigenous to the Churince system in Cuatro Ciénegas Coahuila, México. Environ Microbiol 2019; 21:2964–2976 [View Article]
    [Google Scholar]
  27. Ruiz-Roldán L, Rojo-Bezares B, de Toro M, López M, Toledano P et al. Antimicrobial resistance and virulence of Pseudomonas spp. among healthy animals: concern about exolysin ExlA detection. Sci Rep 2020; 10:1–11 [View Article]
    [Google Scholar]
  28. Huber P, Basso P, Reboud E, Attrée I. Pseudomonas aeruginosa renews its virulence factors. Environ Microbiol Rep 2016; 8:564–571 [View Article] [PubMed]
    [Google Scholar]
  29. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009; 7:654–665 [View Article]
    [Google Scholar]
  30. Engel J, Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 2009; 12:61–66 [View Article] [PubMed]
    [Google Scholar]
  31. Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 2004; 72:6969–6977 [View Article] [PubMed]
    [Google Scholar]
  32. Vance RE, Rietsch A, Mekalanos JJ. Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect Immun 2005; 73:1706–1713 [View Article] [PubMed]
    [Google Scholar]
  33. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000; 2:1051–1060 [View Article] [PubMed]
    [Google Scholar]
  34. Zhang Y, Miller RM. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 1992; 58:3276–3282 [View Article]
    [Google Scholar]
  35. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article]
    [Google Scholar]
  36. Rudra B, Gupta RS. Phylogenomic and comparative genomic analyses of species of the family Pseudomonadaceae: proposals for the genera Halopseudomonas gen. nov. and Atopomonas gen. nov., merger of the genus Oblitimonas with the genus Thiopseudomonas, and transfer of some misclassified species of the genus Pseudomonas into other genera. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  37. Lalucat J, Mulet M, Gomila M, García-Valdés E. Genomics in bacterial taxonomy: impact on the genus Pseudomonas. Genes 2020; 11:E139 [View Article]
    [Google Scholar]
  38. Wang Z, Wu M. A phylum-level bacterial phylogenetic marker database. Mol Biol Evol 2013; 30:1258–1262 [View Article] [PubMed]
    [Google Scholar]
  39. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article]
    [Google Scholar]
  40. Gupta RS, Patel S, Saini N, Chen S. Erratum: robust demarcation of seventeen distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for emended genus Bacillus limiting it only to the members of the subtilis and cereus clades of species. Int J Syst Evol Microbiol 2020; 70:6531–6533 [View Article]
    [Google Scholar]
  41. Eddy SR. Profile hidden Markov models. Bioinformatics 1998; 14:755–763 [View Article] [PubMed]
    [Google Scholar]
  42. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:10 [View Article] [PubMed]
    [Google Scholar]
  43. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article]
    [Google Scholar]
  44. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  45. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001; 18:691–699 [View Article] [PubMed]
    [Google Scholar]
  46. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  47. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  48. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  49. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  50. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  51. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  52. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  53. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  54. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  55. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  56. Gupta RS. Identification of conserved indels that are useful for classification and evolutionary studies. In Methods in Microbiology vol 41 2014 pp 153–182
    [Google Scholar]
  57. Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin’s views on classification. FEMS Microbiol Rev 2016; 40:520–553 [View Article] [PubMed]
    [Google Scholar]
  58. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Biochem Sci 1998; 23:403–405 [View Article] [PubMed]
    [Google Scholar]
  59. Gupta RS. Identification of conserved indels that are useful for classification and evolutionary studies. In Methods in Microbiology Oxford: Elsevier; 2014 pp 153–182
    [Google Scholar]
  60. Gupta RS. Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales). BMC Genomics 2006; 7:167 [View Article] [PubMed]
    [Google Scholar]
  61. Naushad HS, Lee B, Gupta RS. Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Int J Syst Evol Microbiol 2014; 64:366–383 [View Article] [PubMed]
    [Google Scholar]
  62. Phillips I. Identification of Pseudomonas aeruginosa in the clinical laboratory. J Med Microbiol 1969; 2:9–16 [View Article] [PubMed]
    [Google Scholar]
  63. Rashid MH, Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2000; 97:4885–4890 [View Article]
    [Google Scholar]
  64. Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997; 179:5756–5767 [View Article]
    [Google Scholar]
  65. de la Cruz TEE, Torres JMO. Gelatin hydrolysis test protocol. American Society for Microbiology; 2012 https://asm.org/Protocols/Gelatin-Hydrolysis-Test-Protocol
  66. Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox M. Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep 2018; 8:15668 [View Article]
    [Google Scholar]
  67. Reboud E, Basso P, Maillard AP, Huber P, Attrée I. Exolysin shapes the virulence of Pseudomonas aeruginosa clonal outliers. Toxins 2017; 9:E364 [View Article]
    [Google Scholar]
  68. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  69. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  70. Girard L, Lood C, Höfte M, Vandamme P, Rokni-Zadeh H et al. The ever-expanding Pseudomonas genus: description of 43 new species and partition of the Pseudomonas putida group. Microorganisms 2021; 9:1766 [View Article]
    [Google Scholar]
  71. Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol 2002; 56:289–314 [View Article]
    [Google Scholar]
  72. Gupta RS. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 1998; 62:1435–1491 [View Article]
    [Google Scholar]
  73. Gupta RS. Microbial taxonomy: how and why name changes occur and their significance for (clinical) microbiology. Clin Chem 2021; 68:134–137 [View Article]
    [Google Scholar]
  74. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article]
    [Google Scholar]
  75. Griffiths E, Gupta RS. Protein signatures distinctive of chlamydial species: horizontal transfers of cell wall biosynthesis genes glmU from Archaea to Chlamydiae and murA between Chlamydiae and Streptomyces. Microbiology 2002; 148:2541–2549 [View Article]
    [Google Scholar]
  76. Gao B, Paramanathan R, Gupta RS. Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 2006; 90:69–91 [View Article] [PubMed]
    [Google Scholar]
  77. Dutilh BE, Snel B, Ettema TJG, Huynen MA. Signature genes as a phylogenomic tool. Mol Biol Evol 2008; 25:1659–1667 [View Article] [PubMed]
    [Google Scholar]
  78. Peix A, Ramírez-Bahena M-H, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: an update. Infect Genet Evol 2018; 57:106–116 [View Article] [PubMed]
    [Google Scholar]
  79. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Genomic and genetic diversity within the Pseudomonas fluorescens omplex. PLoS One 2016; 11:e0150183 [View Article]
    [Google Scholar]
  80. Singh B, Gupta RS. Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 2009; 281:361–373 [View Article] [PubMed]
    [Google Scholar]
  81. Chen S, Rudra B, Gupta RS. Phylogenomics and molecular signatures support division of the order Neisseriales into emended families Neisseriaceae and Chromobacteriaceae and three new families Aquaspirillaceae fam. nov., Chitinibacteraceae fam. nov., and Leeiaceae fam. nov. Syst Appl Microbiol 2021; 44:126251 [View Article]
    [Google Scholar]
  82. Gao B, Sugiman-Marangos S, Junop MS, Gupta RS. Structural and phylogenetic analysis of a conserved actinobacteria-specific protein (ASP1; SCO1997) from Streptomyces coelicolor. BMC Struct Biol 2009; 9:40 [View Article]
    [Google Scholar]
  83. Lorenzini E, Singer A, Singh B, Lam R, Skarina T et al. Structure and protein-protein interaction studies on Chlamydia trachomatis protein CT670 (YscO Homolog). J Bacteriol 2010; 192:2746–2756 [View Article] [PubMed]
    [Google Scholar]
  84. Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19:331–342 [View Article]
    [Google Scholar]
  85. Doudoroff M, Palleroni NJ, Genus I. Pseudomonas Migula 1894, 237 Nom. cons. Opin. 5, Jud. Comm. 1952, 121. In Buchanan RE, Gibbons NE, Cowan ST, Holt JG, Liston J et al. eds Bergey’s Manual of Determinative Bacteriology, 8th. edn Baltimore, USA: The Williams & Wilkins Company; 1977 pp 217–243
    [Google Scholar]
  86. Palleroni NJ. Genus I. Pseudomonas Migula 1894 237 Nom. Cons. Opin. 5. Jud. Comm. 1952, 121. In Bergey’s Manual of Systematic Bacteriology 2005
    [Google Scholar]
  87. Diggle SP, Whiteley M. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology 2020; 166:30–33 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005542
Loading
/content/journal/ijsem/10.1099/ijsem.0.005542
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error