1887

Abstract

A novel thermoacidophilic archeaon, strain J1 (=DSM 112778,=JCM 34702), was isolated from a hot pool in a volcanic area of Java, Indonesia. Cells of the strain were irregular, motile cocci of 1.0–1.2 µm diameter. Aerobic, organoheterotrophic growth with casamino acids was observed at an optimum temperature of 70 °C in a range of 55–78 °C and at an optimum pH of 3 in a range of 1.5 to 5. Various organic compounds were utilized, including a greater variety of sugars than has been reported for growth of other species of the genus. Chemolithoautotrophic growth was observed with reduced sulphur compounds, including mineral sulphides. Ferric iron was reduced during anaerobic growth with elemental sulphur. Cellular lipids were calditoglycerocaldarchaeol and caldarchaeol with some derivates. The organism contained the respiratory quinone caldariellaquinone. On the basis of phylogenetic and chemotaxonomic comparison with its closest relatives, it was concluded that strain J1 represents a novel species, for which the name is proposed. Low DNA–DNA relatedness values (16S rRNA gene <98.4%, average nucleotide identity (ANI) <80.1%) distinguished J1 from other species of the genus and the DNA G+C content of 47.3% is the highest among the known species of the genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005536
2022-10-17
2024-03-29
Loading full text...

Full text loading...

References

  1. Ehrlich HL, Newman DK, Kappler A. Ehrlich’s Geomicrobiology, Sixth edition. Boca Raton: CRC Press, Taylor & Francis Group; 2016
    [Google Scholar]
  2. du Plessis CA, Batty JD, Dew DW. Commercial applications of thermophile bioleaching. In Rawlings DE, Johnson DB. eds Biomining Berlin, Heidelberg: Springer; 2007 pp 57–80 [View Article]
    [Google Scholar]
  3. Urbieta MS, Donati ER, Chan K-G, Shahar S, Sin LL et al. Thermophiles in the genomic era: biodiversity, science, and applications. Biotechnol Adv 2015; 33:633–647 [View Article] [PubMed]
    [Google Scholar]
  4. Huber G, Spinnler C, Gambacorta A, Stetter KO. Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 2007; 12:38–47 [View Article]
    [Google Scholar]
  5. Ai C, McCarthy S, Eckrich V, Rudrappa D, Qiu G et al. Increased acid resistance of the archaeon, Metallosphaera sedula by adaptive laboratory evolution. J Ind Microbiol Biotechnol 2016; 43:1455–1465 [View Article] [PubMed]
    [Google Scholar]
  6. Takayanagi S, Kawasaki H, Sugimori K, Yamada T, Sugai A et al. Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int J Syst Bacteriol 1996; 46:377–382 [View Article] [PubMed]
    [Google Scholar]
  7. Liu L-J, You X-Y, Guo X, Liu S-J, Jiang C-Y. Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. Int J Syst Evol Microbiol 2011; 61:2395–2400 [View Article] [PubMed]
    [Google Scholar]
  8. Peng T-J, Liu L-J, Liu C, Yang Z-F, Liu S-J et al. Metallosphaera tengchongensis sp. nov., an acidothermophilic archaeon isolated from a hot spring. Int J Syst Evol Microbiol 2015; 65:537–542 [View Article] [PubMed]
    [Google Scholar]
  9. Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO. Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 1995; 18:560–566 [View Article]
    [Google Scholar]
  10. Norris PR, Burton NP, Clark DA. Mineral sulfide concentrate leaching in high temperature bioreactors. Minerals Engineering 1995; 48:10–19 [View Article]
    [Google Scholar]
  11. Norris PR, Gould OJP, Ogden TJ. Iron solubilization during anaerobic growth of acidophilic microorganisms with a polymetallic sulfide ore. Minerals Engineering 2015; 75:77–84 [View Article]
    [Google Scholar]
  12. Norris PR, Burton NP, Foulis NAM. Acidophiles in bioreactor mineral processing. Extremophiles 2000; 4:71–76 [View Article] [PubMed]
    [Google Scholar]
  13. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  14. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  15. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  16. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  17. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article] [PubMed]
    [Google Scholar]
  18. Carver T, Berriman M, Tivey A, Patel C, Böhme U et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 2008; 24:2672–2676 [View Article] [PubMed]
    [Google Scholar]
  19. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [View Article] [PubMed]
    [Google Scholar]
  20. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  24. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  25. Felsenstein J. Statistical inference of phylogenies. J R Stat Soc Ser A 1983; 146:246 [View Article]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  28. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article] [PubMed]
    [Google Scholar]
  29. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  30. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  31. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  32. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  33. Oelschlägel M, Rückert C, Kalinowski J, Schmidt G, Schlömann M et al. Sphingopyxis fribergensis sp. nov., a soil bacterium with the ability to degrade styrene and phenylacetic acid. Int J Syst Evol Microbiol 2015; 65:3008–3015 [View Article] [PubMed]
    [Google Scholar]
  34. Wang P, Li LZ, Qin YL, Liang ZL, Li XT et al. Comparative genomic analysis reveals the metabolism and evolution of the thermophilic archaeal genus Metallosphaera. Front Microbiol 2020; 11:1192 [View Article] [PubMed]
    [Google Scholar]
  35. Auernik KS, Kelly RM. Impact of molecular hydrogen on chalcopyrite bioleaching by the extremely thermoacidophilic archaeon Metallosphaera sedula. Appl Environ Microbiol 2010; 76:2668–2672 [View Article] [PubMed]
    [Google Scholar]
  36. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News 20:
    [Google Scholar]
  37. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  38. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  39. Lengger SK, Hopmans EC, Sinninghe Damsté JS, Schouten S. Impact of sedimentary degradation and deep water column production on GDGT abundance and distribution in surface sediments in the Arabian Sea: implications for the TEX86 paleothermometer. Geochim Cosmochim Acta 2014; 142:386–399 [View Article]
    [Google Scholar]
  40. Weber Y, Sinninghe Damsté JS, Hopmans EC, Lehmann MF, Niemann H. Incomplete recovery of intact polar glycerol dialkyl glycerol tetraethers from lacustrine suspended biomass. Limnol Oceanogr Methods 2014; 15:782–793 [View Article]
    [Google Scholar]
  41. Besseling MA, Hopmans EC, Boschman RC, Sinninghe Damsté JS, Villanueva L. Benthic archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone. Biogeosciences 2014; 15:4047–4064 [View Article]
    [Google Scholar]
  42. Nishihara M, Morii H, Koga Y. Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum. J Biochem 1987; 101:1007–1015 [View Article] [PubMed]
    [Google Scholar]
  43. Sugai A, Sakuma R, Fukuda I, Kurosawa N, Itoh YH et al. The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius. Lipids 1995; 30:339–344 [View Article] [PubMed]
    [Google Scholar]
  44. Carballeira NM, Reyes M, Sostre A, Huang H, Verhagen MF et al. Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima. J Bacteriol 1997; 179:2766–2768 [View Article] [PubMed]
    [Google Scholar]
  45. Dibrova DV, Galperin MY, Mulkidjanian AY. Phylogenomic reconstruction of archaeal fatty acid metabolism: fatty acid metabolism in archaea. Environ Microbiol 2014; 16:907–918
    [Google Scholar]
  46. Hamerly T, Tripet B, Wurch L, Hettich RL, Podar M et al. Characterization of fatty acids in Crenarchaeota by GC-MS and NMR. Archaea 2015; 2015:472726 [View Article] [PubMed]
    [Google Scholar]
  47. De Rosa M, De Rosa S, Gambacorta A, Minale L, Thomson RH et al. Caldariellaquinone, a unique benzo[b]thiophen-4,7-quinone from Caldariella acidophila, an extremely thermophilic and acidophilic bacterium. J Chem Soc, Perkin Trans 1 1977653 [View Article]
    [Google Scholar]
  48. De Rosa M, Gambacorta A. The lipids of archaebacteria. Prog Lipid Res 1988; 27:153–175 [View Article] [PubMed]
    [Google Scholar]
  49. Kurosawa N, Itoh YH, Itoh T. Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov. based on phylogenetic evidence and DNA G+C content. Int J Syst Evol Microbiol 2003; 53:1607–1608 [View Article] [PubMed]
    [Google Scholar]
  50. Auernik KS, Kelly RM. Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Appl Environ Microbiol 2008; 74:7723–7732 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005536
Loading
/content/journal/ijsem/10.1099/ijsem.0.005536
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error