1887

Abstract

A Gram-stain-negative, aerobic, orange-coloured, rod-shaped and non-motile bacterial strain, PAMC 29362, was isolated from an Antarctic lichen, . Phylogenetic and phylogenomic analyses indicated that strain PAMC 29362 belongs to the genus and was most closely related to (97.0% of 16S rRNA gene similarity), (96.3 %) (95.3 %) and (95.2 %). Genomic relatedness analyses showed that strain PAMC 29362 is clearly distinguished from type strains of the genus based on values of average nucleotide identity (<74.3 %) and digital DNA–DNA hybridization (<20.4 %). The genomic DNA G+C content of PAMC 29362 was 65.5 %. The major fatty acids (>10 %) were summed feature 8 (C 7; 38.5 %) and summed feature 3 (C 7 and/or C 6; 31.5 %). The major respiratory quinone was Q-10. Based on the results of phylogenetic, genome-based relatedness and physiological analyses, strain PAMC 29362 is proposed to represent a novel species of the genus , with the name sp. nov. The type strain is PAMC 29362 (=KCTC 82 578=JCM 34545)

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005535
2022-09-27
2024-04-25
Loading full text...

Full text loading...

References

  1. Fukuda W, Chino Y, Araki S, Kondo Y, Imanaka H et al. Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock. Int J Syst Evol Microbiol 2014; 64:2034–2040 [View Article]
    [Google Scholar]
  2. Jia L, Feng X, Zheng Z, Han L, Hou X et al. Polymorphobacter fuscus sp. nov., isolated from permafrost soil, and emended description of the genus Polymorphobacter. Int J Syst Evol Microbiol 2015; 65:3920–3925 [View Article]
    [Google Scholar]
  3. Xing T, Liu Y, Wang N, Xu B, Shen L et al. Polymorphobacter glacialis sp. nov., isolated from ice core. Int J Syst Evol Microbiol 2017; 67:617–620 [View Article] [PubMed]
    [Google Scholar]
  4. Phurbu D, Liu Z-X, Liu H-C, Lhamo Y, Yangzom P et al. Polymorphobacter arshaanensis sp. nov., containing the photosynthetic gene pufML, isolated from a volcanic lake. Int J Syst Evol Microbiol 2020; 70:1093–1098 [View Article] [PubMed]
    [Google Scholar]
  5. Tahon G, Willems A. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Syst Appl Microbiol 2017; 40:357–369 [View Article] [PubMed]
    [Google Scholar]
  6. de Bary A. Die Erscheinung der Symbiose Strassburg: Verlag Von Karl J. Trubner; 1879 [View Article]
    [Google Scholar]
  7. Oulhen N, Schulz BJ, Carrier TJ. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis 2016; 69:131–139 [View Article]
    [Google Scholar]
  8. Grube M. Die Hard:Lichens. In Symbioses and Stress Dordrecht-Heidelberg; Springer; 2010 pp 509–523
    [Google Scholar]
  9. Dodge CW. Lichen flora of the antarctic continent and adjacent islands. Phoenix pub 1973
    [Google Scholar]
  10. Coppins B, Wolseley P. Lichens of tropical forests. Tropical Mycol 2002; 2:113–131
    [Google Scholar]
  11. Lawrey JD, Diederich P. Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 2003; 106:80–120 [View Article]
    [Google Scholar]
  12. Liba CM, Ferrara FIS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC et al. Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 2006; 101:1076–1086 [View Article]
    [Google Scholar]
  13. González I, Ayuso-Sacido A, Anderson A, Genilloud O. Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 2005; 54:401–415 [View Article] [PubMed]
    [Google Scholar]
  14. Cardinale M, Vieira de Castro J, Müller H, Berg G, Grube M. In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 2008; 66:63–71 [View Article] [PubMed]
    [Google Scholar]
  15. Grube M, Cardinale M, de Castro JV Jr, Müller H, Berg G. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 2009; 3:1105–1115 [View Article] [PubMed]
    [Google Scholar]
  16. Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N. Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 2011; 77:1309–1314 [View Article] [PubMed]
    [Google Scholar]
  17. Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 2012; 14:147–161 [View Article] [PubMed]
    [Google Scholar]
  18. Lee YM, Kim EH, Lee HK, Hong SG. Biodiversity and physiological characteristics of Antarctic and Arctic lichens-associated bacteria. World J Microbiol Biotechnol 2014; 30:2711–2721 [View Article] [PubMed]
    [Google Scholar]
  19. Biosca EG, Flores R, Santander RD, Díez-Gil JL, Barreno E. Innovative approaches using lichen enriched media to improve isolation and culturability of lichen associated bacteria. PLoS One 2016; 11:e0160328 [View Article] [PubMed]
    [Google Scholar]
  20. Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 2015; 9:412–424 [View Article] [PubMed]
    [Google Scholar]
  21. Noh H-J, Park Y, Hong SG, Lee YM. Diversity and physiological characteristics of Antarctic lichens-associated bacteria. Microorganisms 2021; 9:607 [View Article] [PubMed]
    [Google Scholar]
  22. Printzen C, Fernández-Mendoza F, Muggia L, Berg G, Grube M. Alphaproteobacterial communities in geographically distant populations of the lichen Cetraria aculeata. FEMS Microbiol Ecol 2012; 82:316–325 [View Article] [PubMed]
    [Google Scholar]
  23. Noh H-J, Lee YM, Park CH, Lee HK, Cho J-C et al. Microbiome in Cladonia squamosa is vertically stratified according to microclimatic conditions. Front Microbiol 2020; 11:268 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Jeon Y-S, Chung H, Park S, Hur I, Lee J-H et al. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005; 21:3171–3173 [View Article]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  28. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article]
    [Google Scholar]
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  30. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 1971; 37:540–546 [View Article]
    [Google Scholar]
  31. Hu J, Fan J, Sun Z, Liu S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 2020; 36:2253–2255 [View Article]
    [Google Scholar]
  32. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  33. Moriya Y, Itoh M, Okuda S, Kanehisa M. K. KEGG automatic annotation server. Genome Informatics 2005; 5:
    [Google Scholar]
  34. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019 [View Article] [PubMed]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  36. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  37. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation toidentify bacterial species. Microbe Magazine 2006; 9:111–118 [View Article]
    [Google Scholar]
  38. Mise K, Masuda Y, Senoo K, Itoh H. Undervalued pseudo-nifH sequences in public databases distort metagenomic insights into biological nitrogen fixers. mSphere 2021; 6:e0078521 [View Article] [PubMed]
    [Google Scholar]
  39. Rodríguez H, Fraga R, Gonzalez T, Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 2006; 287:15–21 [View Article]
    [Google Scholar]
  40. KOVACS N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  41. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. Introduction to the Proteobacteria. The Prokaryotes: A Handbook on the Biology of Bacteria New York, NY: Springer; 2006 pp 3–37 [View Article]
    [Google Scholar]
  42. Russell NJ. Biological sciences. Cold adaptation of microorganisms. Phil Trans R Soc Lond B 1990; 326:595–611 [View Article]
    [Google Scholar]
  43. Madigan MT. Extremophilic Bacteria and Microbial Diversity. Ann Missouri Botanical Garden 2000; 87:3 [View Article]
    [Google Scholar]
  44. Chattopadhyay MK. Mechanism of bacterial adaptation to low temperature. J Biosci 2006; 31:157–165 [View Article] [PubMed]
    [Google Scholar]
  45. Siliakus MF, van der Oost J, Kengen SWM. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 2017; 21:651–670 [View Article]
    [Google Scholar]
  46. Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M et al. Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 2010; 33:71–83 [View Article]
    [Google Scholar]
  47. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME) Newark, NY: Microbial; 2006
    [Google Scholar]
  48. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005535
Loading
/content/journal/ijsem/10.1099/ijsem.0.005535
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error