1887

Abstract

Six Gram-stain-positive, aerobic or facultative anaerobic, catalase-positive, urease- and oxidase-negative, rod-shaped bacteria (zg-ZUI157/zg-ZUI40, zg-ZUI222/zg-ZUI199 and zg-ZUI188/ zg-ZUI168) were characterized by a polyphasic approach. Optimal growth of the six strains was observed at pH 7.0 and 28 °C. Phylogenetic analyses based on the 16S rRNA gene and 247 core genes revealed that they belong to genus . The three type strains have low digital DNA-DNA hybridization (19.3–30.1%) and average nucleotide identity values (78.0-85.5%) with all available genomes in the genus , and a DNA G+C content range of 73.0-74.6 mol%. The major fatty acids detected in strain pairs zg-ZUI157/zg-ZUI40 and zg-ZUI 222/zg-ZUI199 were C, anteiso-C and anteiso A-C, and C, anteiso-C, anteiso A-C and anteiso-C in strain pair zg-ZUI188/zg-ZUI168. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol mannosides were the major polar lipids detected in the three novel species. MK-9(H) was the predominant quinone detected in strains zg-ZUI222 (87.4 %) and zg-ZUI188 (91.4 %), and MK-9(H) (49.1 %) and MK-8 (43.4 %) in strain zg-ZUI157. The cell-wall sugars detected in the three novel species mainly contained rhamnose. The cell-wall peptidoglycan type of the three novel species was A4, with an inferred -Orn-Asp interpeptide bridge for strains zg-ZUI157 and zg-ZUI222, and -Orn-Glu for strain zg-ZUI188. Based on the results of the phenotypic, phylogenetic, genomic hybridization, average nucleotide identity and chemotaxonomic analyses, the six strains should be classified as belonging to three novel species, for which the names sp. nov. (zg-ZUI157=GDMCC 1.2559=KCTC 49678), sp. nov. (zg-ZUI222=GDMCC 1.2501=KCTC 49675) and sp. nov. (zg-ZUI188=GDMCC 1.2563=KCTC 49674) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005533
2022-10-20
2024-04-25
Loading full text...

Full text loading...

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923
    [Google Scholar]
  2. Stackebrandt E, Keddie RM. Genus Cellulomonas. In Mair NS, Sharpe ME. eds Bergey’s Manual of Systematic Bacteriology vol 2 Baltimore: Williams & Wilkins; 1986 pp 1325–1329
    [Google Scholar]
  3. Lee HJ, Kim SY, Whang KS. Cellulomonas citrea sp. nov., isolated from paddy soil. Int J Syst Evol Microbiol 2020; 70:5304–5311 [View Article]
    [Google Scholar]
  4. Shi Z, Luo G, Wang G. Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 2012; 62:2004–2010 [View Article]
    [Google Scholar]
  5. Elberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-Daloii MR et al. Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol 2000; 50 Pt 3:993–996 [View Article]
    [Google Scholar]
  6. An D-S, Im W-T, Yang H-C, Kang MS, Kim KK et al. Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 2005; 55:1705–1709 [View Article]
    [Google Scholar]
  7. Kim S-K, Kook M, Yan Z-F, Trinh H, Zheng S-D et al. Cellulomonas aurantiaca sp. nov., isolated from a soil sample from a tangerine field. Antonie Van Leeuwenhoek 2019; 112:1623–1632 [View Article]
    [Google Scholar]
  8. Tian Y, Han C, Hu J, Zhao J, Zhang C et al. Cellulomonas rhizosphaerae sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 2019; 69:1001–1008 [View Article]
    [Google Scholar]
  9. Hatayama K, Esaki K, Ide T. Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013; 63:60–65 [View Article]
    [Google Scholar]
  10. Yoon MH, Ten LN, Im WT, Lee ST. Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int J Syst Evol Microbiol 2008; 58:1878–1884 [View Article]
    [Google Scholar]
  11. Kang M-S, Im W-T, Jung H-M, Kim MK, Goodfellow M et al. Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost. Int J Syst Evol Microbiol 2007; 57:1256–1260 [View Article]
    [Google Scholar]
  12. Yamamura H, Hayashi T, Hamada M, Kohda T, Serisawa Y et al. Cellulomonas algicola sp. nov., an actinobacterium isolated from a freshwater alga. Int J Syst Evol Microbiol 2019; 69:2723–2728 [View Article]
    [Google Scholar]
  13. Zhang L, Xi L, Qiu D, Song L, Dai X et al. Cellulomonas marina sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2013; 63:3014–3018 [View Article]
    [Google Scholar]
  14. Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T et al. Cellulomonas pakistanensis sp. nov., a moderately halotolerant actinobacteria. Int J Syst Evol Microbiol 2014; 64:2305–2311 [View Article]
    [Google Scholar]
  15. Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 2004; 54:533–536 [View Article]
    [Google Scholar]
  16. Rusznyák A, Tóth EM, Schumann P, Spröer C, Makk J et al. Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond. Int J Syst Evol Microbiol 2011; 61:1662–1666 [View Article]
    [Google Scholar]
  17. Lee C-M, Weon H-Y, Hong S-B, Jeon Y-A, Schumann P et al. Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:2925–2929 [View Article]
    [Google Scholar]
  18. Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Cellulomonas massiliensis sp. nov. Stand Genomic Sci 2012; 7:258–270 [View Article]
    [Google Scholar]
  19. Tian Z, Lu S, Jin D, Yang J, Pu J et al. Cellulomonas shaoxiangyii sp. nov., isolated from faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:2204–2210 [View Article]
    [Google Scholar]
  20. Zhang SS, Xu JF, Sun XL, Guo W, Liu ZS. Cellulomonas taurus sp. nov., a novel bacteria with multiple hydrolase activity isolated from livestock, and potential application in wastewater treatment. Antonie van Leeuwenhoek 2021; 114:527–538 [View Article]
    [Google Scholar]
  21. Sun X, Li J, Du J, Xiao H, Ni J. Cellulomonas macrotermitis sp. nov., a chitinolytic and cellulolytic bacterium isolated from the hindgut of a fungus-growing termite. Antonie van Leeuwenhoek 2018; 111:471–478 [View Article]
    [Google Scholar]
  22. Shi Y-L, Sun Y, Ruan Z-Y, Su J, Yu L-Y et al. Cellulomonas telluris sp. nov., an endoglucanase-producing actinobacterium isolated from Badain Jaran desert sand. Int J Syst Evol Microbiol 2020; 70:631–635 [View Article] [PubMed]
    [Google Scholar]
  23. McCarthy A. Third generation DNA sequencing: Pacific Biosciences’ single molecule real time technology. Chem Biol 2010; 17:675–676 [View Article]
    [Google Scholar]
  24. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  25. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 2013; 13:141 [View Article]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  27. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; Chapter 2:Unit [View Article]
    [Google Scholar]
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  30. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article]
    [Google Scholar]
  31. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article]
    [Google Scholar]
  32. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  33. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article]
    [Google Scholar]
  34. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article]
    [Google Scholar]
  36. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article]
    [Google Scholar]
  37. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  39. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  40. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. eds Actinomycete Taxonomy Arlington, VA: Society for Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  41. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  42. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article]
    [Google Scholar]
  43. Collins MD, Pascual C. Reclassification of actinomyces humiferus (Gledhill and Casida) as Cellulomonas humilata nom. corrig., comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 2:661–663 [View Article]
    [Google Scholar]
  44. Abt B, Foster B, Lapidus A, Clum A, Sun H et al. Complete genome sequence of Cellulomonas flavigena type strain (134T). Stand Genomic Sci 2010; 3:15–25 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005533
Loading
/content/journal/ijsem/10.1099/ijsem.0.005533
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error