1887

Abstract

Six strains of black meristematic fungi were isolated from Antarctic soils, gasoline car tanks and from the marine alga . These fungi were characterized by morphological, physiological and phylogenetic analyses. According to the maximum-likelihood analysis reconstructed with ITS and LSU sequences, these strains belonged to the genus sp. nov. (holotype CBS 148926) and sp. nov. (holotype CBS 149015) are proposed as two novel species and descriptions of their morphological, physiological and phylogenetic features are presented. Based on the maximum-likelihood analyses, was closely related to (99 % bootstrap support), while clustered in the clade of and (93 % bootstrap support). , recorded in Antarctic soil samples, had a psychrophilic behaviour, with optimal growth between 10 and 15 °C and no growth recorded at 20 °C. , from a gasoline car tank and algae, displayed optimal growth between 20 and 25 °C and was more tolerant to salinity than .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005530
2022-10-06
2024-03-29
Loading full text...

Full text loading...

References

  1. Vincent WF. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antart Sci 2000; 12:374–385 [View Article]
    [Google Scholar]
  2. Gonçalves MFM, Paço A, Escada LF, Albuquerque MSF, Pinto CA et al. Unveiling biological activities of marine fungi: the effect of sea salt. Appl Sci 2022; 11:6008 [View Article]
    [Google Scholar]
  3. Jones EBG. Are there more marine fungi to be described?. Bot Mar 2000; 54:343–354 [View Article]
    [Google Scholar]
  4. Poli A, Bovio E, Ranieri L, Varese GC, Prigione V. Fungal diversity in the Neptune forest: comparison of the Mycobiota of Posidonia oceanica, Flabellia petiolata, and Padina pavonica. Front Microbiol 2000; 11:933 [View Article]
    [Google Scholar]
  5. Prenafeta-Boldú FX, Armjio-Medina C, Isola D. Black fungi in the built environment–the good, the bad, and the ugly. In Pacheco-Torgal F, Ivanov V, Falkinham JO. eds Viruses, Bacteria, and Fungi in the Built Environment. Designing Healthy Indoor Environments Duxford, UK: Elsevier-Woodhead; 2020 pp 65–99
    [Google Scholar]
  6. Nai C, Wong HY, Pannenbecker A, Broughton WJ, Benoit I et al. Nutritional physiology of a rock-inhabiting, model microcolonial fungus from an ancestral lineage of the Chaetothyriales (Ascomycetes). Fungal Genet Biol 2013; 56:54–66 [View Article] [PubMed]
    [Google Scholar]
  7. Tesei D, Tafer H, Poyntner C, Piñar G, Lopandic K et al. Draft genome sequences of the black rock fungus Knufia petricola and its spontaneous nonmelanized mutant. Genome Announc 2017; 5:e01242-17 [View Article] [PubMed]
    [Google Scholar]
  8. Caneva G, Isola D, Lee HJ, Chung YJ. Biological risk for hypogea: shared data from Etruscan tombs in Italy and ancient tombs of the Baekje dynasty in Republic of Korea. Appl Sci 2020; 10:6104 [View Article]
    [Google Scholar]
  9. Isola D, Zucconi L, Cecchini A, Caneva G. Dark-pigmented biodeteriogenic fungi in etruscan hypogeal tombs: New data on their culture-dependent diversity, favouring conditions, and resistance to biocidal treatments. Fungal Biol 2021; 125:609–620 [View Article] [PubMed]
    [Google Scholar]
  10. de Hoog GS, Vicente VA, Gorbushina AA. The bright future of darkness--the rising power of black fungi: black yeasts, microcolonial fungi, and their relatives. Mycopathologia 2013; 175:365–368 [View Article] [PubMed]
    [Google Scholar]
  11. Onofri S, Zucconi L, Isola D, Selbmann L. Rock-inhabiting fungi and their role in deterioration of stone monuments in the Mediterranean area. Plant Biosyst 2014; 148:384–391 [View Article]
    [Google Scholar]
  12. Gueidan C, Aptroot A, da Silva Cáceres ME, Badali H, Stenroos S. A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog 2014; 13:1027–1039 [View Article]
    [Google Scholar]
  13. Hutchison LJ, Untereiner WA, Hiratsuka Y. Knufia cryptophialidica gen. et sp. nov., a dematiaceous hyphomycete isolated from black galls of trembling aspen (Populus tremuloides). Mycologia 1995; 87:902–908 [View Article]
    [Google Scholar]
  14. Selbmann L, Grube M, Onofri S, Isola D, Zucconi L. Antarctic epilithic lichens as niches for black meristematic fungi. Biology 2013; 2:784–797 [View Article]
    [Google Scholar]
  15. Réblová M, Untereiner WA, Réblová K. Novel evolutionary lineages revealed in the Chaetothyriales (fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. PLoS One 2013; 8:e63547 [View Article] [PubMed]
    [Google Scholar]
  16. Tsuneda A, Currah RS. Pleomorphic conidiogenesis among strains of Knufia cryptophialidica. Can J Bot 2005; 83:510–517 [View Article]
    [Google Scholar]
  17. Li DM, Chen XR. A new superficial fungal infection caused by Coniosporium epidermidis. J Am Acad Dermatol 2010; 63:725–727 [View Article] [PubMed]
    [Google Scholar]
  18. Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S et al. Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 2013; 175:369–379 [View Article] [PubMed]
    [Google Scholar]
  19. Isola D, Scano A, Orrù G, Prenafeta-Boldú FX, Zucconi L. Hydrocarbon-contaminated sites: is there something more than Exophiala xenobiotica? New insights into black fungal diversity using the long cold incubation method. J Fungi (Basel) 2021; 7:10 [View Article] [PubMed]
    [Google Scholar]
  20. Gnavi G, Garzoli L, Poli A, Prigione V, Burgaud G et al. The culturable mycobiota of Flabellia petiolata: first survey of marine fungi associated to a Mediterranean green alga. PLoS One 2017; 12:e0175941 [View Article] [PubMed]
    [Google Scholar]
  21. Poli A, Varese GC, Garzoli L, Prigione V. Seagrasses, seaweeds and plant debris: an extraordinary reservoir of fungal diversity in the mediterranean sea. Fungal Ecol 2022; 60:101156 [View Article]
    [Google Scholar]
  22. He F, Lin B, Sun JZ, Liu XZ. Knufia aspidiotus sp. nov., a new black yeast from scale insects. Phytotaxa 2013; 153:39 [View Article]
    [Google Scholar]
  23. Crous PW, Cowan DA, Maggs-Kölling G, Yilmaz N, Thangavel R et al. Fungal planet description sheets. Persoonia 2021; 46:313–528
    [Google Scholar]
  24. White TJ, Burns TD, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal DNA genes for phylogenies. In Innis MA, Gelfand DH, Snisky JJ, White TJ. eds PCR Protocols, a Guide to Methods and Applications San Diego, CA, USA: Academic; 1990 pp 315–322
    [Google Scholar]
  25. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990; 172:4238–4246 [View Article] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  27. Shearer CA, Crane JL, Miller MA. Illinois fungi 6. Two new species of wood-inhabiting hyphomycetes from freshwater. Mycologia 1976; 68:184–189 [View Article]
    [Google Scholar]
  28. Mehrabi M, Asgari B, Hemmati R. Knufia perfecta, a new black yeast from Iran, and a key to Knufia species. nova_hedwigia 2018; 106:519–534 [View Article]
    [Google Scholar]
  29. Tesei D, Chiang AJ, Kalkum M, Stajich JE, Mohan GBM et al. Effects of simulated microgravity on the proteome and secretome of the polyextremotolerant black fungus Knufia chersonesos. Front Genet 2021; 12:638708 [View Article] [PubMed]
    [Google Scholar]
  30. Sterflinger K. Fungi as geologic agents. Geomicrobiol J 2018; 17:97–124 [View Article]
    [Google Scholar]
  31. Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D et al. Evolution and adaptation of fungi at boundaries of life. Adv Space Res 2007; 40:1657–1664 [View Article]
    [Google Scholar]
  32. Zucconi L, Onofri S, Cecchini C, Isola D, Ripa C et al. Mapping the lithic colonization at the boundaries of life in Northern Victoria Land, Antarctica. Polar Biol 2007; 39:91–102 [View Article]
    [Google Scholar]
  33. Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S. Fungi at the edge of life: cryptoendolithic black fungi from antarctic desert. Stud Mycol 2005; 51:1–32
    [Google Scholar]
  34. Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, van der Bank M et al. Fungal planet description sheets: 154-213. Persoonia 2013; 31:188–296 [View Article] [PubMed]
    [Google Scholar]
  35. Wollenzien U, de Hoog GS, Krumbein W, Uijthof JM. Sarcinomyces petricola, a new microcolonial fungus from marble in the Mediterranean basin. Antonie van Leeuwenhoek 1997; 71:281–288 [View Article] [PubMed]
    [Google Scholar]
  36. Mitchison-Field LMY, Vargas-Muñiz JM, Stormo BM, Vogt EJD, Van Dierdonck S et al. Unconventional cell division cycles from marine-derived yeasts. Curr Biol 2019; 29:3439–3456 [View Article] [PubMed]
    [Google Scholar]
  37. Isola D, Bartoli F, Meloni P, Caneva G, Zucconi L. Black fungi and stone heritage conservation: ecological and metabolic assays for evaluating colonization potential and responses to traditional biocides. Appl Sci 2022; 12:2038 [View Article]
    [Google Scholar]
  38. Hubka V, Réblová M, Rehulka J, Selbmann L, Isola D et al. Bradymyces gen. nov. (Chaetothyriales, Trichomeriaceae), a new ascomycete genus accommodating poorly differentiated melanized fungi. Antonie Van Leeuwenhoek 2014; 106:979–992 [View Article]
    [Google Scholar]
  39. Sun W, Su L, Yang S, Sun J, Liu B et al. Unveiling the hidden diversity of rock-inhabiting fungi: chaetothyriales from China. J Fungi 2020; 6:E187 [View Article]
    [Google Scholar]
  40. Li DM, de Hoog GS, Saunte DML, van den Ende A, Chen XR. Coniosporium epidermidis sp. nov., a new species from human skin. Stud Mycol 2008; 61:131–136 [View Article]
    [Google Scholar]
  41. Isola D, Zucconi L, Onofri S, Caneva G, de Hoog GS et al. Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers 2016; 76:75–96 [View Article]
    [Google Scholar]
  42. Madrid H, Guarro J, Crous PW. Fungal planet 209 – 26 November 2013: Knufia tsunedae Madrid, guarro & crous sp. nov. Persoonia 2013; 31:284
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005530
Loading
/content/journal/ijsem/10.1099/ijsem.0.005530
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error