gen. nov., sp. nov., gen. nov., sp. nov. and gen. nov., comb. nov., representing the environmental GKS98 (betIII) cluster No Access

Abstract

We present two strains affiliated with the GKS98 cluster. This phylogenetically defined cluster is representing abundant, mainly uncultured freshwater bacteria, which were observed by many cultivation-independent studies on the diversity of bacteria in various freshwater lakes and streams. Bacteria affiliated with the GKS98 cluster were detected by cultivation-independent methods in freshwater systems located in Europe, Asia, Africa and the Americas. The two strains, LF4-65 (=CCUG 56422=DSM 107630) and MWH-P2sevCIIIb (=CCUG 56420=DSM 107629), are aerobic chemoorganotrophs, both with genome sizes of 3.2 Mbp and G+C values of 52.4 and 51.0 mol%, respectively. Phylogenomic analyses based on concatenated amino acid sequences of 120 proteins suggest an affiliation of the two strains with the family and revealed and (= ) as being the closest related, previously described species. However, the calculated phylogenomic trees clearly suggest that the current genus represents a polyphyletic taxon. Based on the branching order in the phylogenomic trees, as well as the revealed phylogenetic distances and chemotaxonomic traits, we propose to establish the new genus gen. nov. and the new species sp. nov. to harbour strain LF4-65 and the new genus gen. nov. and the new species sp. nov. to harbour strain MWH-P2sevCIIIb. Furthermore, we propose the reclassification of the species in the new genus gen. nov. The new genera , and together represent taxonomically the GKS98 cluster.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005513
2022-09-07
2024-03-29
Loading full text...

Full text loading...

References

  1. De Ley J, Segers P, Kersters K, Mannheim W, Lievens A. Intra- and intergeneric similarities of the bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int J Syst Bacteriol 1986; 36:405–414 [View Article]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Vandamme PA, Peeters C, Cnockaert M, Inganäs E, Falsen E. Bordetella bronchialis sp. nov. Bordetella flabilis sp. nov. and Bordetella sputigena sp. nov., isolated from human respiratory specimens, and reclassification of Achromobacter sediminum Zhang et al 2014 as Verticia sediminum gen. nov., comb. nov. Int J Syst Evol Microbiol 2015; 65:3674–3682
    [Google Scholar]
  4. Coenye T, Vanlaere E, Samyn E, Falsen E, Larsson P et al. Advenella incenata gen. nov., sp. nov., a novel member of the Alcaligenaceae, isolated from various clinical samples. Int J Syst Evol Microbiol 2005; 55:251–256
    [Google Scholar]
  5. Ying J-J, Zhang S-L, Huang C-Y, Xu L, Zhao Z et al. Algicoccus marinus gen. nov. sp. nov., a marine bacterium isolated from the surface of brown seaweed Laminaria japonica. Arch Microbiol 2019; 201:943–950
    [Google Scholar]
  6. Carlier A, Cnockaert M, Fehr L, Vandamme P, Eberl L. Draft genome and description of Orrella dioscoreae gen. nov. sp. nov., a new species of Alcaligenaceae isolated from leaf acumens of Dioscorea sansibarensis. Syst Appl Microbiol 2017; 40:11–21
    [Google Scholar]
  7. Lin JY, Hobson WJ, Wertz JT. Saccharedens versatilis gen. nov., sp. nov., a sugar-degrading member of the Burkholderiales isolated from Cephalotes rohweri ant guts. Int J Syst Evol Microbiol 2017; 67:447–453 [View Article] [PubMed]
    [Google Scholar]
  8. Xie C-H, Yokota A. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 2005; 55:2419–2425 [View Article]
    [Google Scholar]
  9. Felföldi T, Schumann P, Mentes A, Kéki Z, Máthé I et al. Caenimicrobium hargitense gen. nov., sp. nov., a new member of the family Alcaligenaceae (Betaproteobacteria) isolated from activated sludge. Int J Syst Evol Microbiol 2017; 67:627–632 [View Article]
    [Google Scholar]
  10. Stolz A, Bürger S, Kuhm A, Kämpfer P, Busse H-J. Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. Int J Syst Evol Microbiol 2005; 55:1077–1081 [View Article] [PubMed]
    [Google Scholar]
  11. Chen W-M, Xie P-B, Hsu M-Y, Sheu S-Y. Parvibium lacunae gen. nov., sp. nov., a new member of the family Alcaligenaceae isolated from a freshwater pond. Int J Syst Evol Microbiol 2018; 68:1291–1299 [View Article]
    [Google Scholar]
  12. França L, Albuquerque L, Sánchez C, Fareleira P, da Costa MS. Ampullimonas aquatilis gen. nov., sp. nov. isolated from bottled mineral water. Int J Syst Evol Microbiol 2016; 66:1459–1465 [View Article]
    [Google Scholar]
  13. Zhang Z, Fan X, Gao X, Zhang X-H. Achromobacter sediminum sp. nov., isolated from deep subseafloor sediment of South Pacific Gyre. Int J Syst Evol Microbiol 2014; 64:2244–2249 [View Article] [PubMed]
    [Google Scholar]
  14. Vandamme PA. Proposal of Verticiella gen. nov. as replacement for the illegitimate prokaryotic genus name Verticia Vandamme et al. 2015. Int J Syst Evol Microbiol 2016; 66:5099–5100 [View Article] [PubMed]
    [Google Scholar]
  15. Zwart G, Crump B, Kamst-van Agterveld M, Hagen F, Han S. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 2002; 28:141–155 [View Article]
    [Google Scholar]
  16. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 2011; 75:14–49 [View Article] [PubMed]
    [Google Scholar]
  17. Pernthaler J, Glockner FO, Unterholzner S, Alfreider A, Psenner R et al. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 1998; 64:4299–4306 [View Article] [PubMed]
    [Google Scholar]
  18. El Saied HE. Molecular genetic monitoring of bacterial communities in manzala lake, Egypt, based on 16S rRNA gene analysis. Egyptian Journal of Aquatic Research 2007; 33:179–194
    [Google Scholar]
  19. Clingenpeel S, Macur RE, Kan J, Inskeep WP, Lovalvo D et al. Yellowstone Lake: high-energy geochemistry and rich bacterial diversity. Environ Microbiol 2011; 13:2172–2185 [View Article] [PubMed]
    [Google Scholar]
  20. Percent SF, Frischer ME, Vescio PA, Duffy EB, Milano V et al. Bacterial community structure of acid-impacted lakes: what controls diversity?. Appl Environ Microbiol 2008; 74:1856–1868 [View Article] [PubMed]
    [Google Scholar]
  21. Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T. Spatio-temporal niche separation of planktonic betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol 2008; 10:2074–2086 [View Article] [PubMed]
    [Google Scholar]
  22. Lymperopoulou DS, Kormas KA, Karagouni AD. Variability of prokaryotic community structure in a drinking water reservoir (Marathonas, Greece). Microbes Environ 2012; 27:1–8 [View Article] [PubMed]
    [Google Scholar]
  23. Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 2006; 72:5478–5485 [View Article] [PubMed]
    [Google Scholar]
  24. Watanabe K, Komatsu N, Kitamura T, Ishii Y, Park H-D et al. Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environ Microbiol 2012; 14:2511–2525 [View Article] [PubMed]
    [Google Scholar]
  25. Sheu S-Y, Chen L-C, Yang C-C, Carlier A, Chen W-M. Orrella amnicola sp. nov., isolated from a freshwater river, reclassification of Algicoccus marinus as Orrella marina comb. nov., and emended description of the genus Orrella. Int J Syst Evol Microbiol 2020; 70:6381–6389 [View Article]
    [Google Scholar]
  26. Hahn MW, Stadler P, Wu QL, Pöckl M. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 2004; 57:379–390 [View Article] [PubMed]
    [Google Scholar]
  27. Zwart G, van Hannen EJ, Kamst-van Agterveld MP, Van der Gucht K, Lindström ES et al. Rapid screening for freshwater bacterial groups by using reverse line blot hybridization. Appl Environ Microbiol 2003; 69:5875–5883 [View Article] [PubMed]
    [Google Scholar]
  28. Hahn MW, Huymann LR, Koll U, Schmidt J, Lang E et al. Polynucleobacter wuianus sp. nov., a free-living freshwater bacterium affiliated with the cryptic species complex PnecC. Int J Syst Evol Microbiol 2017; 67:379–385 [View Article] [PubMed]
    [Google Scholar]
  29. Hahn MW, Schmidt J, Pitt A, Taipale SJ, Lang E. Reclassification of four Polynucleobacter necessarius strains as Polynucleobacter asymbioticus comb.nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov., and Polynucleobacter sinensis sp. nov., and emended description of the species Polynucleobacter necessarius. Int J Syst Evol Microbiol 2016; 66:2883–2892
    [Google Scholar]
  30. Pitt A, Schmidt J, Lang E, Whitman WB, Woyke T et al. Polynucleobacter meluiroseus sp. nov., a bacterium isolated from a lake located in the mountains of the Mediterranean island of Corsica. Int J Syst Evol Microbiol 2018; 68:1975–1985 [View Article] [PubMed]
    [Google Scholar]
  31. Pitt A, Schmidt J, Koll U, Hahn MW. Aquirufa antheringensis gen. nov. sp. nov. and Aquirufa nivalisilvae sp. nov., representing a new genus of widespread freshwater bacteria. Int J Syst Evol Microbiol 2019; 69:2739–2749
    [Google Scholar]
  32. Hahn MW, Pitt A, Koll U, Schmidt J, Maresca JA et al. Aurantimicrobium photophilum sp. nov., a non-photosynthetic bacterium adjusting its metabolism to the diurnal light cycle and reclassification of Cryobacterium mesophilum as Terrimesophilobacter mesophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  33. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics 2010; 11:11.5 [View Article]
    [Google Scholar]
  34. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genomic Sci 2015; 10:86 [View Article] [PubMed]
    [Google Scholar]
  35. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  36. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  37. Kasalický V, Zeng Y, Piwosz K, Šimek K, Kratochvilová H et al. Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans. Appl Environ Microbiol 2018; 84:02116–02117 [View Article] [PubMed]
    [Google Scholar]
  38. Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J 2016; 10:1642–1655 [View Article] [PubMed]
    [Google Scholar]
  39. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  40. Chen I-MA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017; 45:D507–D516 [View Article] [PubMed]
    [Google Scholar]
  41. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article] [PubMed]
    [Google Scholar]
  42. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article] [PubMed]
    [Google Scholar]
  43. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  44. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  45. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  46. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  47. Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics 1998; 14:817–818 [View Article] [PubMed]
    [Google Scholar]
  48. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:e02475–02419 [View Article]
    [Google Scholar]
  49. Salcher MM, Posch T, Pernthaler J. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 2013; 7:896–907 [View Article] [PubMed]
    [Google Scholar]
  50. Hahn MW, Huemer A, Pitt A, Hoetzinger M. Opening a next-generation black box: ecological trends for hundreds of species-like taxa uncovered within a single bacterial >99% 16S rRNA operational taxonomic unit. Mol Ecol Resour 2021; 21:2471–2485 [View Article] [PubMed]
    [Google Scholar]
  51. Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J et al. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 2000; 66:5053–5065 [View Article] [PubMed]
    [Google Scholar]
  52. Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthaler J. Members of a readily enriched beta-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 2003; 69:6550–6559 [View Article] [PubMed]
    [Google Scholar]
  53. Watanabe K, Ishii Y, Komatsu N, Kitamura T, Watanabe M et al. Growth rates and tolerance to low water temperatures of freshwater bacterioplankton strains: ecological insights from shallow hypereutrophic lakes in Japan. Hydrobiologia 2016; 792:67–81 [View Article]
    [Google Scholar]
  54. Watanabe K, Komatsu N, Ishii Y, Negishi M. Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol Ecol 2009; 67:57–68 [View Article] [PubMed]
    [Google Scholar]
  55. Singh P, Kim YJ, Singh H, Farh M-A, Yang D-C. Achromobacter panacis sp. nov., isolated from rhizosphere of Panax ginseng. J Microbiol 2017; 55:428–434 [View Article] [PubMed]
    [Google Scholar]
  56. Negandhi K, Laurion I, Lovejoy C. Bacterial communities and greenhouse gas emissions of shallow ponds in the high Arctic. Polar Biol 2014; 37:1669–1683 [View Article]
    [Google Scholar]
  57. Liu Z, Huang S, Sun G, Xu Z, Xu M. Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China. FEMS Microbiol Ecol 2012; 80:30–44 [View Article] [PubMed]
    [Google Scholar]
  58. Balmonte JP, Arnosti C, Underwood S, McKee BA, Teske A. Riverine bacterial communities reveal environmental disturbance signatures within the Betaproteobacteria and Verrucomicrobia. Front Microbiol 2016; 7:1441 [View Article] [PubMed]
    [Google Scholar]
  59. Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC et al. It’s all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 2008; 10:2200–2210 [View Article] [PubMed]
    [Google Scholar]
  60. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  61. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  62. Yabuuchi E, Yano I. Achromobacter gen. nov. and Achromobacter xylosoxidans (ex Yabuuchi and Ohyama 1971) nom. rev. Int J Syst Bacteriol 1981; 31:477–478 [View Article]
    [Google Scholar]
  63. Team RC. R: A language and environment for statistical computing. In R Foundation for Statistical Computing Vienna, Austria URL: 2019 https://www.R-project.org/
    [Google Scholar]
  64. Minka TP, Deckmyn A. Maps: Draw geographical maps. R package version 3.3.0 2018 https://CRAN.R-project.org/package=maps
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005513
Loading
/content/journal/ijsem/10.1099/ijsem.0.005513
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed