1887

Abstract

A novel Gram-stain-negative, aerobic, coccus-shaped bacteria, designated ZY201115, was isolated from the nasal cavity of a sheep with respiratory disease in Yunnan Province, south-west China, and its taxonomic affiliation was studied by applying a polyphasic approach. The strain grew at 18–41 °C (optimum, 37 °C), at pH 6.0–9.0 (optimum, pH 8.0) and in 0.5–3.0% (w/v) NaCl (optimum, 1.0 % NaCl). Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain is affiliated to the genus with highest similarity to ATCC 10900 (96.6 %). Phylogenomic analysis based on 811 single-copy genes also indicated that the strain represents a novel species in the genus and formed a deep and separated clade with NCTC 10293. The highest genomic orthologous average nucleotide identity and digital DNA–DNA hybridization values between the strain and the type strains in the genus were 73.7% ( NCTC 10293) and 25.3% ( CCUG 350), respectively. The G+C content of the complete genome sequence was 42.1 mol%. The predominant fatty acids (>5 %) were C ω9, C ω8, C3OH and summed feature 3 (C ω7 and/or C ω6). The major polar lipids were phosphatidylglycerol, cardiolipin, monolysocardiolipin, phosphatidylethanolamine and hemibismonoacylglycerophosphate. The major respiratory quinone was CoQ-8. On the basis of the results of phylogenetic, phenotypic and chemotaxonomic characterizations, strain ZY201115 clearly represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ZY201115 (=CCTCC AB 2021473=CCUG 75922).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005511
2022-09-06
2024-04-19
Loading full text...

Full text loading...

References

  1. Lwoff A. Révision et démembrement des hemophilae, le genre Moraxella nov. gen. Ann Inst Pasteur 1939; 62:168–176
    [Google Scholar]
  2. Bevre M. Moraxella Lwoff. In Breed RS, Murray EGD, Hitchens AP. eds Bergey’s Manual of Determinative Bacteriology, 6th edn. Baltimore: The Williams & Wilkins Co; 1984 pp 590–592
    [Google Scholar]
  3. Xie CH, Yokota A. Transfer of the misnamed [Alysiella] sp. IAM 14971 (=ATCC 29468) to the genus Moraxella as Moraxella oblonga sp. nov. Int J Syst Evol Microbiol 2005; 55:331–334 [View Article] [PubMed]
    [Google Scholar]
  4. Kodjo A, Tønjum T, Richard Y, Bøvre K. Moraxella caprae sp. nov., a new member of the classical Moraxellae with very close affinity to Moraxella bovis. Int J Syst Bacteriol 1995; 45:467–471 [View Article] [PubMed]
    [Google Scholar]
  5. Hughes DE, Pugh GW. Isolation and description of a Moraxella from horses with conjunctivitis. Am J Vet Res 1970; 31:457–462 [PubMed]
    [Google Scholar]
  6. Jannes G, Vaneechoutte M, Lannoo M, Gillis M, Vancanneyt M et al. Polyphasic taxonomy leading to the proposal of Moraxella canis sp. nov. for Moraxella catarrhalis-like strains. Int J Syst Bacteriol 1993; 43:438–449 [View Article] [PubMed]
    [Google Scholar]
  7. Vela AI, Sánchez-Porro C, Aragón V, Olvera A, Domínguez L et al. Moraxella porci sp. nov., isolated from pigs. Int J Syst Evol Microbiol 2010; 60:2446–2450 [View Article] [PubMed]
    [Google Scholar]
  8. Bøvre K, Hagen N. The family Neisseriaceae. rod-shaped species of the genera Moraxella, Acinetobacter, Kingella, and Neisseria, and the Branhamella group of cocci. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. eds The Prokaryotes Berlin: Springer-Verlag; 1981 pp 1506–1529
    [Google Scholar]
  9. Bruner DW, Fabricant J. A strain of Moraxella anatipestifer (Pfeifferella anatipestifer) isolated from ducks. Cornell Vet 1954; 44:461–464 [PubMed]
    [Google Scholar]
  10. Henriksen SD, Bovre K. The taxonomy of the genera Moraxella and Neisseria. J Gen Microbiol 1968; 51:387–392 [View Article] [PubMed]
    [Google Scholar]
  11. Bovre K, Fuglesang JE, Hagen N, Jantzen E, Froholm LO. Moraxella atlantae sp. nov. and its distinction from Moraxella phenylpyrouvica. Int J Syst Bacteriol 1976; 26:511–521 [View Article]
    [Google Scholar]
  12. Kim HE, Lee JJ, Lee MJ, Kim BS. Analysis of microbiome in raw chicken meat from butcher shops and packaged products in South Korea to detect the potential risk of foodborne illness. Food Res Int 2019; 122:517–527 [View Article] [PubMed]
    [Google Scholar]
  13. Tryland M, Romano JS, Marcin N, Nymo IH, Josefsen TD et al. Cervid herpesvirus 2 and not Moraxella bovoculi caused keratoconjunctivitis in experimentally inoculated semi-domesticated Eurasian tundra reindeer. Acta Vet Scand 2017; 59:23 [View Article] [PubMed]
    [Google Scholar]
  14. Embers ME, Doyle LA, Whitehouse CA, Selby EB, Chappell M et al. Characterization of a Moraxella species that causes epistaxis in macaques. Vet Microbiol 2011; 147:367–375 [View Article] [PubMed]
    [Google Scholar]
  15. Addis MF, Cappuccinelli R, Tedde V, Pagnozzi D, Viale I et al. Influence of Moraxella sp. colonization on the kidney proteome of farmed gilthead sea breams (Sparus aurata, L.). Proteome Sci 2010; 8:50 [View Article] [PubMed]
    [Google Scholar]
  16. Cavallo RA, Acquaviva MI, Stabili L. Culturable heterotrophic bacteria in seawater and Mytilus galloprovincialis from a Mediterranean area (Northern Ionian Sea-Italy). Environ Monit Assess 2009; 149:465–475 [View Article] [PubMed]
    [Google Scholar]
  17. An R, Sreevatsan S, Grewal PS. Moraxella osloensis gene expression in the slug host Deroceras reticulatum. BMC Microbiol 2008; 8:19 [View Article] [PubMed]
    [Google Scholar]
  18. Ventura F, Barranco R, Buffelli F, Fulcheri E, Bandettini R et al. Unexpected and sudden death due to undiagnosed Moraxella catarrhalis meningoencephalitis in a 40-day-old infant: case report and literature review. Am J Forensic Med Pathol 2020; 41:333–337 [View Article]
    [Google Scholar]
  19. Duployez C, Loïez C, Ledoux G, Armand S, Jaillette E et al. A fatal endocarditis case due to an emerging bacterium: Moraxella nonliquefaciens. IDCases 2017; 8:12–13 [View Article] [PubMed]
    [Google Scholar]
  20. Tabbuso T, Defourny L, Lali SE, Pasdermadjian S, Gilliaux O. Moraxella osloensis infection among adults and children: a pediatric case and literature review. Arch Pediatr 2021; 28:348–351 [View Article] [PubMed]
    [Google Scholar]
  21. Gould S, Dewell R, Tofflemire K, Whitley RD, Millman ST et al. Randomized blinded challenge study to assess association between Moraxella bovoculi and infectious bovine keratoconjunctivitis in dairy calves. Vet Microbiol 2013; 164:108–115 [View Article] [PubMed]
    [Google Scholar]
  22. Cerny HE, Rogers DG, Gray JT, Smith DR, Hinkley S. Effects of Moraxella (Branhamella) ovis culture filtrates on bovine erythrocytes, peripheral mononuclear cells, and corneal epithelial cells. J Clin Microbiol 2006; 44:772–776 [View Article] [PubMed]
    [Google Scholar]
  23. Kim KT, Lee SH, Kwak D. Identification of Moraxella lacunata from pulmonary abscesses in three zoo herbivores. J Vet Med Sci 2018; 80:1914–1917 [View Article] [PubMed]
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991 pp 115–175
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Moon YG, Seo SH, Lee SD, Heo MS. Loktanella pyoseonensis sp. nov., isolated from beach sand, and emended description of the genus Loktanella. Int J Syst Evol Microbiol 2010; 60:785–789 [View Article] [PubMed]
    [Google Scholar]
  31. Lee Y, Jeon CO. Sphingomonas frigidaeris sp. nov., isolated from an air conditioning system. Int J Syst Evol Microbiol 2017; 67:3907–3912 [View Article] [PubMed]
    [Google Scholar]
  32. Angelos JA, Spinks PQ, Ball LM, George LW. Moraxella bovoculi sp. nov., isolated from calves with infectious bovine keratoconjunctivitis. Int J Syst Evol Microbiol 2007; 57:789–795 [View Article] [PubMed]
    [Google Scholar]
  33. Vela AI, Arroyo E, Aragón V, Sánchez-Porro C, Latre MV et al. Moraxella pluranimalium sp. nov., isolated from animal specimens. Int J Syst Evol Microbiol 2009; 59:671–674 [View Article] [PubMed]
    [Google Scholar]
  34. Wilson K. Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology New York: John Wiley; 2001 p 2
    [Google Scholar]
  35. Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 2016; 13:1050–1054 [View Article] [PubMed]
    [Google Scholar]
  36. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  37. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  38. Li YC, Lu YC. BLASTP-ACC: parallel architecture and hardware accelerator design for BLAST-based protein sequence alignment. IEEE Trans Biomed Circuits Syst 2019; 13:1771–1782 [View Article] [PubMed]
    [Google Scholar]
  39. Fischer S, Brunk BP, Chen F, Gao X, Harb OS et al. Using orthomcl to assign proteins to orthomcl-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics 2011; 6:1–19
    [Google Scholar]
  40. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  41. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  42. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  44. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res 2016; 44:D694–7 [View Article] [PubMed]
    [Google Scholar]
  45. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  46. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  47. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 1990; 101:1–6
    [Google Scholar]
  48. Li F, Zhao W, Hong Q, Shao Q, Song J et al. Faecalibacter bovis sp. nov., isolated from cow faeces. Int J Syst Evol Microbiol 2021; 71:71 [View Article] [PubMed]
    [Google Scholar]
  49. Li F, Zhao W, Zhu J, Hong Q, Shao Q et al. Mannheimia ovis sp. nov., isolated from dead sheep with hemorrhagic pneumonia. Curr Microbiol 2020; 77:3504–3511 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005511
Loading
/content/journal/ijsem/10.1099/ijsem.0.005511
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error