1887

Abstract

Strains LMG 7974 and LMG 8286 represent single, novel lineages with and as nearest phylogenomic neighbours, respectively. The results of average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) analyses of LMG 7974, LMG 8286 and type strains of species of the genus confirmed that these strains represent novel species of the genus . The 16S rRNA gene sequences of both strains showed highest identity towards (97.84 and 98.74 %, respectively). Strains LMG 7974 and LMG 8286 shared 72.5 and 73.7% ANI, respectively, with their nearest phylogenomic neighbours and less than 21 % dDDH. The draft genome sizes of LMG 7974 and LMG 8286 are 1 945429 bp and 1 708214 bp in length with percentage DNA G+C contents of 33.8 and 37.2 %, respectively. Anomalous biochemical characteristics and low MALDI-TOF mass spectrometry log scores supported their designation as representing novel species of the genus . We therefore propose to classify strain LMG 7974 (=CCUG 20705) as the type strain of the novel species sp. nov. and strain LMG 8286 (=CCUG 24193, NCTC 11879) as the type strain of the novel species sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005510
2022-12-13
2024-12-06
Loading full text...

Full text loading...

References

  1. Lawson AJ, On SLW, Logan JMJ, Stanley J. Campylobacter hominis sp. nov., from the human gastrointestinal tract. Int J Syst Evol Microbiol 2001; 51:651–660 [View Article]
    [Google Scholar]
  2. Moore JE, Corcoran D, Dooley JSG, Fanning S, Lucey B et al. Campylobacter. Vet Res 2005; 36:351–382 [View Article]
    [Google Scholar]
  3. Dingle KE, Blaser MJ, Tu Z-C, Pruckler J, Fitzgerald C et al. Genetic relationships among reptilian and mammalian Campylobacter fetus strains determined by multilocus sequence typing. J Clin Microbiol 2010; 48:977–980 [View Article] [PubMed]
    [Google Scholar]
  4. Fitzgerald C, Tu ZC, Patrick M, Stiles T, Lawson AJ et al. Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles. Int J Syst Evol Microbiol 2014; 64:2944–2948 [View Article] [PubMed]
    [Google Scholar]
  5. Wagenaar JA, van Bergen MAP, Blaser MJ, Tauxe RV, Newell DG et al. Campylobacter fetus infections in humans: exposure and disease. Clin Infect Dis 2014; 58:1579–1586 [View Article] [PubMed]
    [Google Scholar]
  6. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global epidemiology of Campylobacter infection. Clin Microbiol Rev 2015; 28:687–720 [View Article] [PubMed]
    [Google Scholar]
  7. Altekruse SF, Stern NJ, Fields PI, Swerdlow DL. Campylobacter jejuni—an emerging foodborne pathogen. Emerg Infect Dis 1999; 5:28–35 [View Article]
    [Google Scholar]
  8. Casey E, Fitzgerald E, Lucey B. Towards understanding clinical campylobacter infection and its transmission: time for a different approach?. Br J Biomed Sci 2017; 74:53–64 [View Article] [PubMed]
    [Google Scholar]
  9. García Rodríguez LA, Ruigómez A, Panés J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology 2006; 130:1588–1594 [View Article]
    [Google Scholar]
  10. On SLW. Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: current status, future prospects and immediate concerns. J Appl Microbiol 2001; 90:1S–15S [View Article]
    [Google Scholar]
  11. Man SM. The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 2011; 8:669–685 [View Article] [PubMed]
    [Google Scholar]
  12. European Food Safety AuthorityEuropean Centre for Disease Prevention and Control The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, aimals and food in 2017. EFSA Journal 2019; 17:5598
    [Google Scholar]
  13. Sheppard SK, Maiden MCJ. The evolution of Campylobacter jejuni and Campylobacter coli. Cold Spring Harb Perspect Biol 2015; 7:a018119 [View Article] [PubMed]
    [Google Scholar]
  14. Terefe Y, Deblais L, Ghanem M, Helmy YA, Mummed B et al. Co-occurrence of Campylobacter species in children from Eastern Ethiopia, and their association with environmental enteric dysfunction, diarrhea, and host microbiome. Front Public Health 2020; 8:99 [View Article] [PubMed]
    [Google Scholar]
  15. Boukerb AM, Penny C, Serghine J, Walczak C, Cauchie H-M et al. Campylobacter armoricus sp. nov., a novel member of the Campylobacter lari group isolated from surface water and stools from humans with enteric infection. Int J Syst Evol Microbiol 2019; 69:3969–3979 [View Article] [PubMed]
    [Google Scholar]
  16. Bryant E, Shen Z, Mannion A, Patterson M, Buczek J et al. Campylobacter taeniopygiae sp. nov., Campylobacter aviculae sp. nov., and Campylobacter estrildidarum sp. nov., novel species isolated from laboratory-maintained zebra finches. Avian Dis 2020457–466
    [Google Scholar]
  17. Debruyne L, On SLW, De Brandt E, Vandamme P. Novel Campylobacter lari-like bacteria from humans and molluscs: description of Campylobacter peloridis sp. nov., Campylobacter lari subsp. concheus subsp. nov. and Campylobacter lari subsp. lari subsp. nov. Int J Syst Evol Microbiol 2009; 59:1126–1132 [View Article]
    [Google Scholar]
  18. Kaur T, Singh J, Huffman MA, Petrzelková KJ, Taylor NS et al. Campylobacter troglodytis sp. nov., isolated from feces of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) in Tanzania. Appl Environ Microbiol 2011; 77:2366–2373 [View Article] [PubMed]
    [Google Scholar]
  19. Piccirillo A, Niero G, Calleros L, Pérez R, Naya H et al. Campylobacter geochelonis sp. nov. isolated from the western Hermann’s tortoise (Testudo hermanni hermanni). Int J Syst Evol Microbiol 2016; 66:3468–3476 [View Article] [PubMed]
    [Google Scholar]
  20. Iraola G, Forster SC, Kumar N, Lehours P, Bekal S et al. Distinct Campylobacter fetus lineages adapted as livestock pathogens and human pathobionts in the intestinal microbiota. Nat Commun 2017; 8:1367 [View Article] [PubMed]
    [Google Scholar]
  21. Zhang L, Man SM, Day AS, Leach ST, Lemberg DA et al. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn’s disease. J Clin Microbiol 2009; 47:453–455 [View Article] [PubMed]
    [Google Scholar]
  22. Roop RM, Smibert RM, Johnson JL, Krieg NR. Campylobacter mucosalis (Lawson, Leaver, Pettigrew, and Rowland 1981) comb. nov.: emended description. Int J Syst Bacteriol 1985; 35:189–192
    [Google Scholar]
  23. Lawson GHK, Rowland AC. Intestinal adenomatosis in the pig: a bacteriological study. Res Vet Sci 1974; 17:331–336 [PubMed]
    [Google Scholar]
  24. Söderström C, Schalén C, Walder M. Septicaemia caused by unusual Campylobacter species (C. laridis and C. mucosalis). Scand J Infect Dis 1991; 23:369–371 [View Article] [PubMed]
    [Google Scholar]
  25. Friedman CR, Hoekstra RM, Samuel M, Marcus R, Bender J et al. Risk factors for sporadic Campylobacter infection in the United States: a case-control study in FoodNet sites. Clin Infect Dis 2004; 38 Suppl 3:S285–96 [View Article]
    [Google Scholar]
  26. Inglis GD, Boras VF, Houde A. Enteric campylobacteria and RNA viruses associated with healthy and diarrheic humans in the Chinook health region of southwestern Alberta, Canada. J Clin Microbiol 2011; 49:209–219 [View Article] [PubMed]
    [Google Scholar]
  27. Chaban B, Ngeleka M, Hill JE. Detection and quantification of 14 Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals. BMC Microbiol 2010; 10:73 [View Article] [PubMed]
    [Google Scholar]
  28. Lynch OA, Cagney C, McDowell DA, Duffy G. Occurrence of fastidious Campylobacter spp. in fresh meat and poultry using an adapted cultural protocol. Int J Food Microbiol 2011; 150:171–177 [View Article] [PubMed]
    [Google Scholar]
  29. Kasper G, Dickgiesser N. Isolation of campylobacter-like bacteria from gastric epithelium. Infection 1984; 12:179–180 [View Article]
    [Google Scholar]
  30. Costas M, Owen RJ, Jackman PJH. Classification of Campylobacter sputorum and allied campylobacters based on numerical analysis of electrophoretic protein patterns. Syst Appl Microbiol 1987; 9:125–131 [View Article]
    [Google Scholar]
  31. Koziel M, O’Doherty P, Vandamme P, Corcoran GD, Sleator RD et al. Campylobacter corcagiensis sp. nov., isolated from faeces of captive lion-tailed macaques (Macaca silenus). Int J Syst Evol Microbiol 2014; 64:2878–2883 [View Article] [PubMed]
    [Google Scholar]
  32. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing latforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  33. Gorkiewicz G, Feierl G, Schober C, Dieber F, Köfer J et al. Species-specific identification of campylobacters by partial 16S rRNA gene sequencing. J Clin Microbiol 2003; 41:2537–2546 [View Article] [PubMed]
    [Google Scholar]
  34. Muralidharan M, Ghosh A, Singhvi N, Dhanaraj PS, Lal R et al. Identification of genus Campylobacter up to species level using internal features of 16S rRNA gene sequences. Mol Genet Microbiol Virol 2017; 31:187–196 [View Article]
    [Google Scholar]
  35. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:e02475–19 [View Article]
    [Google Scholar]
  36. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article]
    [Google Scholar]
  37. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  38. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  39. García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012; 28:2678–2679 [View Article] [PubMed]
    [Google Scholar]
  40. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016; 32:292–294 [View Article] [PubMed]
    [Google Scholar]
  41. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  42. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  43. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  45. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article]
    [Google Scholar]
  46. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  47. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  48. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  49. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  50. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article] [PubMed]
    [Google Scholar]
  51. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–5 [View Article]
    [Google Scholar]
  52. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  53. Gilbert MJ, Zomer AL, Timmerman AJ, Spaninks MP, Rubio-García A et al. Campylobacter blaseri sp. nov., isolated from common seals (Phoca vitulina). Int J Syst Evol Microbiol 2018; 68:1787–1794 [View Article]
    [Google Scholar]
  54. Bloomfield S, Wilkinson D, Rogers L, Biggs P, French N et al. Campylobacter novaezeelandiae sp. nov., isolated from birds and water in New Zealand. Int J Syst Evol Microbiol 2020; 70:3775–3784 [View Article] [PubMed]
    [Google Scholar]
  55. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  56. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article]
    [Google Scholar]
  57. Yi Y, Fang Y, Wu K, Liu Y, Zhang W. Comprehensive gene and pathway analysis of cervical cancer progression. Oncol Lett 2020; 19:3316–3332 [View Article] [PubMed]
    [Google Scholar]
  58. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2019; 47:D590–D595 [View Article]
    [Google Scholar]
  59. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 2019; 28:1947–1951 [View Article] [PubMed]
    [Google Scholar]
  60. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019; 47:D427–D432 [View Article]
    [Google Scholar]
  61. Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018; 430:2237–2243 [View Article]
    [Google Scholar]
  62. Gabler F, Nam S, Till S, Mirdita M, Steinegger M et al. Protein sequence analysis using the MPI Bioinformatics toolkit. Curr Protoc Bioinformatics 2020; 72: [View Article] [PubMed]
    [Google Scholar]
  63. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article]
    [Google Scholar]
  64. Barakat M, Ortet P, Whitworth DE. P2RP: a web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes. BMC Genomics 2013; 14:269 [View Article]
    [Google Scholar]
  65. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
  66. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article]
    [Google Scholar]
  67. Pearson BM, Louwen R, van Baarlen P, van Vliet AHM. Differential distribution of Type II CRISPR-Cas systems in agricultural and nonagricultural Campylobacter coli and Campylobacter jejuni isolates correlates with lack of shared environments. Genome Biol Evol 2015; 7:2663–2679 [View Article] [PubMed]
    [Google Scholar]
  68. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article]
    [Google Scholar]
  69. Abby SS, Néron B, Ménager H, Touchon M, Rocha EPC. MacSyFinder: program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS ONE 2014; 9:e110726 [View Article]
    [Google Scholar]
  70. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article]
    [Google Scholar]
  71. Shmakov SA, Utkina I, Wolf YI, Makarova KS, Severinov KV et al. CRISPR arrays away from cas genes. CRISPR J 2020; 3:535–549 [View Article]
    [Google Scholar]
  72. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  73. Seeman T. Github https://github.com/tseemann/abricate In press
    [Google Scholar]
  74. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article]
    [Google Scholar]
  75. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article]
    [Google Scholar]
  76. Lin J, Michel LO, Zhang Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 2002; 46:2124–2131 [View Article] [PubMed]
    [Google Scholar]
  77. Lin J, Sahin O, Michel LO, Zhang Q. Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 2003; 71:4250–4259 [View Article] [PubMed]
    [Google Scholar]
  78. Cagliero C, Maurel M-C, Cloeckaert A, Payot S. Regulation of the expression of the CmeABC efflux pump in Campylobacter jejuni: identification of a point mutation abolishing the binding of the CmeR repressor in an in vitro-selected multidrug-resistant mutant. FEMS Microbiol Lett 2007; 267:89–94 [View Article]
    [Google Scholar]
  79. Lehri B, Kukreja K, Vieira A, Zaremba M, Bonney K et al. Specific genetic features of Campylobacter jejuni strain G1 revealed by genome sequencing. FEMS Microbiol Lett 2015; 362:2014–2016 [View Article] [PubMed]
    [Google Scholar]
  80. Cagliero C, Mouline C, Payot S, Cloeckaert A. Involvement of the CmeABC efflux pump in the macrolide resistance of Campylobacter coli. J Antimicrob Chemother 2005; 56:948–950 [View Article] [PubMed]
    [Google Scholar]
  81. Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 2001; 183:5639–5644 [View Article] [PubMed]
    [Google Scholar]
  82. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  83. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–8 [View Article] [PubMed]
    [Google Scholar]
  84. Krause-Gruszczynska M, van Alphen LB, Oyarzabal OA, Alter T, Hänel I et al. Expression patterns and role of the CadF protein in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol Lett 2007; 274:9–16 [View Article] [PubMed]
    [Google Scholar]
  85. Rivera-Amill V, Kim BJ, Seshu J, Konkel ME. Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J Infect Dis 2001; 183:1607–1616 [View Article] [PubMed]
    [Google Scholar]
  86. Kukkonen M, Korhonen TK. The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of Yersinia pestis. Int J Med Microbiol 2004; 294:7–14 [View Article] [PubMed]
    [Google Scholar]
  87. Atack JM, Harvey P, Jones MA, Kelly DJ. The Campylobacter jejuni thiol peroxidases Tpx and Bcp both contribute to aerotolerance and peroxide-mediated stress resistance but have distinct substrate specificities. J Bacteriol 2008; 190:5279–5290 [View Article] [PubMed]
    [Google Scholar]
  88. Cowan SK. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Epub ahead of print 2012: Cambridge University Press; 2012 [View Article]
    [Google Scholar]
  89. On SLW, Holmes B. Assessment of enzyme detection tests useful in identification of campylobacteria. J Clin Microbiol 1992; 30:746–749 [View Article] [PubMed]
    [Google Scholar]
  90. Sandstedt K, Ursing J. Description of Campylobacter upsaliensis sp. nov. previously known as the CNW group. Syst Appl Microbiol 1991; 14:39–45 [View Article]
    [Google Scholar]
  91. Ursing JB, Lior H, Owen RJ. Proposal of minimal standards for describing new species of the family Campylobacteraceae. Int J Syst Bacteriol 1994; 44:842–845 [View Article] [PubMed]
    [Google Scholar]
  92. Christensen WB. Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 1946; 52:461–466 [View Article] [PubMed]
    [Google Scholar]
  93. European Centre for Disease Prevention and Control EU protocol for harmonised monitoring of antimicrobial resistance in human Salmonella and Campylobacter isolates Stockholm; 2016 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005510
Loading
/content/journal/ijsem/10.1099/ijsem.0.005510
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error