1887

Abstract

A Gram-stain-positive, moderately halophilic, aerobic, endospore-forming, rod-shaped bacterium, designated strain DP4-553-S, was isolated from hypersaline sediment collected from the Dalangtan Playa in the Qaidam Basin, Northwest PR China. Growth occurred within 0–21.6% (w/v) NaCl (optimum 7.2%) at pH 5.5–9.0 (optimum pH 7.0) and at 4–45 °C (optimum 37 °C). Phylogeny based on 16S rRNA gene sequences indicated that strain DP4-553-S belonged to the genus , with high 16S rRNA gene sequence similarity to EN8d (99.5 %), JSM 102062 (99.4 %), SK-1 (99.3 %) and NHBX5 (98.3 %). The G+C content of the chromosomal DNA was 43.6 mol %. The average amino acid identity, average nucleotide identity and digital DNA–DNA hybridization values between strain DP4-553-S and the four close type strains were 71.2–93.3, 74.0–90.5 and 20.0–41.4 %, respectively. The whole genomic analysis showed that strain DP4-553-S constituted a different taxon separated from the recognized species. The major cellular fatty acids were anteiso-C, anteiso-C, iso-C, C and iso-C. The type strain contained cell-wall peptidoglycan based on diaminopimelic acid and possessed menaquinone-7 as the major respiratory isoprenoid quinone. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, four unidentified glycolipids, phosphatidylcholine, aminophospholipid, aminolipid and seven unidentified phospholipids. The combined data from phenotypic and genotypic studies demonstrated that strain DP4-553-S represents a novel species of the genus , for which the name sp. nov. is proposed, the type strain is DP4-553-S (=MCCC 1K03838= KCTC 43250).

Funding
This study was supported by the:
  • Science and Technology Development Fund (Award 0005/2020/A1)
    • Principle Award Recipient: TingHuang
  • The Pre-research Project on Civil Aerospace Technologies of CNSA (Award 9007)
    • Principle Award Recipient: YiXu
  • Science and Technology Development Fund (Award 121/2017/A3)
    • Principle Award Recipient: LongXiao
  • National Natural Science Foundation of China (Award 41830214)
    • Principle Award Recipient: LongXiao
  • National Key Research and Development Program of China (Award 2018YFC0310705)
    • Principle Award Recipient: LinfengGong
  • The Pre-research Project on Civil Aerospace Technologies of CNSA (Award D020101)
    • Principle Award Recipient: LongXiao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005501
2022-08-24
2024-12-07
Loading full text...

Full text loading...

References

  1. Carrasco IJ, Márquez MC, Xue Y, Ma Y, Cowan DA et al. Sediminibacillus halophilus gen. nov., sp. nov., a moderately halophilic, gram-positive bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2008; 58:1961–1967 [View Article]
    [Google Scholar]
  2. García MT, Gallego V, Ventosa A, Mellado E. Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 2005; 55:1789–1795 [View Article]
    [Google Scholar]
  3. Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer K-H. Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 1996; 46:492–496 [View Article]
    [Google Scholar]
  4. Wang X, Xue Y, Ma Y. Sediminibacillus albus sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a hypersaline lake, and emended description of the genus Sediminibacillus Carrasco et al. 2008. Int J Syst Evol Microbiol 2009; 59:1640–1644 [View Article] [PubMed]
    [Google Scholar]
  5. Wu Q-L, Chen J-H, Deng L-Y, Liu Z-X, He J-W et al. Sediminibacillus terrae sp. nov., a moderate halophile isolated from non-saline farm soil. Int J Syst Evol Microbiol 2020; 70:1139–1144 [View Article] [PubMed]
    [Google Scholar]
  6. Xiao L, Wang J, Dang Y, Cheng Z, Huang T et al. A new terrestrial analogue site for Mars research: the Qaidam Basin, Tibetan Plateau (NW China). Earth Sci Rev 2017; 164:84–101 [View Article]
    [Google Scholar]
  7. Wang A, Sobron P, Kong F, Zheng M, Zhao Y-Y. Dalangtan Saline Playa in a hyperarid region on Tibet Plateau: II. preservation of salts with high hydration degrees in subsurface. Astrobiology 2018; 18:1254–1276 [View Article] [PubMed]
    [Google Scholar]
  8. Wierzchos J, Ascaso C, McKay CP. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 2006; 6:415–422 [View Article] [PubMed]
    [Google Scholar]
  9. Dyall-Smith M-S. The Halohandbook: Protocols for Halobacterial Genetics 2008 pp 1–144
    [Google Scholar]
  10. Huang T, Wang R, Xiao L, Wang H, Martínez JM et al. Dalangtan Playa (Qaidam Basin, NW China): its microbial life and physicochemical characteristics and their astrobiological implications. PLoS One 2018; 13:e0200949 [View Article] [PubMed]
    [Google Scholar]
  11. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  14. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18:1–32 [View Article]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  18. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 2016; 9:88 [View Article] [PubMed]
    [Google Scholar]
  19. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  20. Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 2016; 13:1050–1054 [View Article] [PubMed]
    [Google Scholar]
  21. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article]
    [Google Scholar]
  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article]
    [Google Scholar]
  23. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucl Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  24. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5: [View Article]
    [Google Scholar]
  25. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: [View Article]
    [Google Scholar]
  28. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  32. Denizci AA, Kazan D, Erarslan A. Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 2010; 60:1590–1594 [View Article] [PubMed]
    [Google Scholar]
  33. Gerhardt P, Murray RGE, Krieg NR, Wood WA. Methods for General and Molecular Bacteriology, 2 edn. Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  34. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  35. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  36. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  37. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  38. Han S-B, Su Y, Hu J, Wang R-J, Sun C et al. Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella. Int J Syst Evol Microbiol 2016; 66:1807–1812 [View Article] [PubMed]
    [Google Scholar]
  39. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  40. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005501
Loading
/content/journal/ijsem/10.1099/ijsem.0.005501
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error