Skip to content
1887

Abstract

A Gram-negative bacterial strain, G163CM, was isolated from the gut of the Asian emerald cockroach . The 16S rRNA gene sequence (1416 bp) of strain G163CM showed 99.22% similarity to CCM 8479 and CPO20170097. The average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity values of strain G163CM were 92.4, 48.8 and 95.7% to CCM 8479, and 93.3, 52.4 and 95.7% to CPO20170097. This strongly supports the designation of G163CM as representing a new species in the genus . Phylogenetic trees based on the alignment of 16S rRNA, multilocus sequence analysis of six single-copy genes (, , , , and ) and 107 core protein sequences consistently showed G163CM to be a member of the genus , closely related to CPO20170097. In contrast to CCM 8479 and CPO20170097, the genome of G163CM did not encode for proteins conferring resistance to antibiotics. However, all three genomes encoded a similar number of virulence factors and specialized metabolite biosynthetic proteins. The major fatty acids of strain G163CM were C (31.5 %), C ω7c (22.6 %), C cyclo (15.3 %) and C (6.5 %). Based on the polyphasic results, we conclude that strain G163CM represents a novel species of the genus and we propose the name sp. nov. with the type strain G163CM (=DSM 112648=CCM 9160).

Funding
This study was supported by the:
  • Hessisches Ministerium für Wissenschaft und Kunst
    • Principle Award Recipient: AndreasVilcinskas
  • Alexander von Humboldt-Stiftung
    • Principle Award Recipient: JuanGuzman
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005497
2022-08-23
2025-05-17
Loading full text...

Full text loading...

References

  1. Kämpfer P, Glaeser SP, Raza MW, Abbasi SA, Perry JD. Pseudocitrobacter gen. nov., a novel genus of the Enterobacteriaceae with two new species Pseudocitrobacter faecalis sp. nov., and Pseudocitrobacter anthropi sp. nov, isolated from fecal samples from hospitalized patients in Pakistan. Syst Appl Microbiol 2014; 37:17–22 [View Article] [PubMed]
    [Google Scholar]
  2. Kämpfer P, Fuglsang-Damgaard D, Overballe-Petersen S, Hasman H, Hammerum AM et al. Taxonomic reassessment of the genus Pseudocitrobacter using whole genome sequencing: Pseudocitrobacter anthropi is a later heterotypic synonym of Pseudocitrobacter faecalis and description of Pseudocitrobacter vendiensis sp. nov. Int J Syst Evol Microbiol 2020; 70:1315–1320 [View Article]
    [Google Scholar]
  3. Cebollada Sánchez R, Lavilla Fernández MJ, Betrán Escartín A, Ortega Larrea D, Torres Sopena L. Pseudocitrobacter anthropi sepsis in a patient with complicated urinary tract infection. Rev Esp Quimioter 2021; 34:254–255 [View Article] [PubMed]
    [Google Scholar]
  4. Sartor AL, Raza MW, Abbasi SA, Day KM, Perry JD et al. Molecular epidemiology of NDM-1-producing Enterobacteriaceae and Acinetobacter baumannii isolates from Pakistan. Antimicrob Agents Chemother 2014; 58:5589–5593 [View Article] [PubMed]
    [Google Scholar]
  5. Li F, Xie R, Liang N, Sun J, Zhu D. Biodegradation of lignin via Pseudocitrobacter anthropi MP-4 isolated from the gut of wood-feeding termite Microtermes pakistanicus (Isoptera: Termitidae). BioRes 2019; 14:1992–2012 [View Article]
    [Google Scholar]
  6. Husna H, Anwar H, Mohib S, Muhammad H, Amjad I et al. Pseudocitrobacter anthropi reduces heavy metal uptake and improves phytohormones and antioxidant system in Glycine max L. World J Microbiol Biotechnol 2021; 37:195 [View Article] [PubMed]
    [Google Scholar]
  7. Guzman J, Sombolestani AS, Poehlein A, Daniel R, Cleenwerck I et al. Entomobacter blattae gen. nov., sp. nov., a new member of the Acetobacteraceae isolated from the gut of the cockroach Gromphadorhina portentosa. Int J Syst Evol Microbiol 2019; 71: [View Article]
    [Google Scholar]
  8. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  9. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  10. Wu W, Feng Y, Zong Z. Enterobacter sichuanensis sp. nov., recovered from human urine. Int J Syst Evol Microbiol 2018; 68:3922–3927 [View Article] [PubMed]
    [Google Scholar]
  11. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article]
    [Google Scholar]
  12. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  13. Hoang DT, Chernomor O, Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2017; 35:518–522 [View Article]
    [Google Scholar]
  14. Naum M, Brown EW, Mason-Gamer RJ. Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the enterobacteriaceae?. J Mol Evol 2008; 66:630–642 [View Article]
    [Google Scholar]
  15. Salvà Serra F, Salvà-Serra F, Svensson-Stadler L, Busquets A, Jaén-Luchoro D et al. A protocol for extraction and purification of high-quality and quantity bacterial DNA applicable for genome sequencing: a modified version of the Marmur procedure. Protocol Exchange 2018; 2018:084 [View Article]
    [Google Scholar]
  16. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  17. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  18. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  19. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:11 [View Article] [PubMed]
    [Google Scholar]
  20. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  21. Batisti Biffignandi G, Gibbon MJ, Corbella M, Thorpe HA, Merla C et al. Genome of Superficieibacter maynardsmithii, a novel, antibiotic susceptible representative of Enterobacteriaceae. G3 (Bethesda) 2021; 11:jkab019 [View Article] [PubMed]
    [Google Scholar]
  22. Liu L, Feng Y, Wei L, Qiao F, Zong Z. Precise species identification and taxonomy update for the genus Kluyvera with reporting Kluyvera sichuanensis sp. nov. Front Microbiol 2020; 11:2288 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  25. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  26. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  27. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:e02475–02419 [View Article]
    [Google Scholar]
  28. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article] [PubMed]
    [Google Scholar]
  29. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 2013; 41:e121 [View Article] [PubMed]
    [Google Scholar]
  30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  31. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article] [PubMed]
    [Google Scholar]
  32. Schwengers O, Hoek A, Fritzenwanker M, Falgenhauer L, Hain T et al. ASA3P: an automatic and scalable pipeline for the assembly, annotation and higher-level analysis of closely related bacterial isolates. PLOS Comput Biol 2020; 16:e1007134 [View Article] [PubMed]
    [Google Scholar]
  33. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  34. Johnston I, Osborn LJ, Markley RL, McManus EA, Kadam A et al. Identification of essential genes for Escherichia coli aryl polyene biosynthesis and function in biofilm formation. NPJ Biofilms Microbiomes 2021; 7:56 [View Article] [PubMed]
    [Google Scholar]
  35. Han AW, Sandy M, Fishman B, Trindade-Silva AE, Soares CAG et al. Turnerbactin, a novel triscatecholate siderophore from the shipworm endosymbiont Teredinibacter turnerae T7901. PLoS One 2013; 8:e76151 [View Article] [PubMed]
    [Google Scholar]
  36. Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE. Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 2005; 33:1141–1153 [View Article] [PubMed]
    [Google Scholar]
  37. Rocha EPC. Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 2004; 14:2279–2286 [View Article] [PubMed]
    [Google Scholar]
  38. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article] [PubMed]
    [Google Scholar]
  39. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  40. Kämpfer P, Meyer S, Müller HE. Characterization of Buttiauxella and Kluyvera species by analysis of whole cell fatty acid patterns. Syst Appl Microbiol 1997; 20:566–571 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005497
Loading
/content/journal/ijsem/10.1099/ijsem.0.005497
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error