Skip to content
1887

Abstract

Three novel Gram-stain-negative, aerobic and rod-shaped bacterial strains, designated RHCKR7, RRHST34 and RHCKR47, were isolated from phyllosphere of healthy citrus collected in Renhua County, Guangdong Province, PR China. Phylogenetic analyses showed that they belonged to the genus , among which both strains RHCKR7 and RRHST34 showed a close relationship with YIM 003 with 16S rRNA gene similarity of 99.0 and 99.1%, respectively, and the similarity between the two novel strains was 99.2%, meanwhile strain RHCKR47 was most closely related to KACC 17591 (99.5%). Genome-derived average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between closely related novel strains RHCKR7 and RRHST34 were 90.43 and 40.80 %, respectively, and their most closely related type strain, YIM 003, showed 90.43 % ANI and 40.7 % dDDH with RHCKR7 and 90.21 % and 42.9 % with RRHST34, respectively, and the corresponding values between strain RHCKR47 and KACC 17591 were 85.53 % and 29.30%, respectively. They all took C 2-OH and summed feature 8 (C 6 and/or C 7) as the major fatty acids, and ubiquinone 10 as the predominant respiratory quinone. The major polar lipids contained sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and unidentified phospholipids. -Homospermidine was the major polyamine. Based on phenotypic, genotypic and chemotaxonomic analyses, the new isolates should be considered as representing three novel species of the genus , for which the names sp. nov., sp. nov. and sp. nov. are proposed with RHCKR7 (=GDMCC 1.2663=JCM 34794), RRHST34 (=GDMCC 1.2665=JCM 34796) and RHCKR47 (=GDMCC 1.2664=JCM 34795) as the type strains, respectively.

Funding
This study was supported by the:
  • the GDAS’ Project of Science and Technology Development (Award 2021GDASYL-20210103020)
    • Principal Award Recipient: XiaoqinDeng
  • the Science and Technology Program of Guangdong Province (Award 2021B1212050022)
    • Principal Award Recipient: HonghuiZhu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005492
2022-08-25
2025-11-18

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/8/ijsem005492.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005492&mimeType=html&fmt=ahah

References

  1. Feng GD, Li J, Pan M, Deng X, Chen M et al. Sphingomonas folii sp. nov., Sphingomonas citri sp. nov. and Sphingomonas citricola sp. nov., isolated from citrus phyllosphere. Figshare [View Article]
    [Google Scholar]
  2. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article]
    [Google Scholar]
  3. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993; 16:227–238 [View Article]
    [Google Scholar]
  4. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article] [PubMed]
    [Google Scholar]
  5. Yabuuchi E, Kosako Y, Naka T, Suzuki S, Yano I. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 1990; 43:339–349 [View Article]
    [Google Scholar]
  6. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52:1485–1496 [View Article] [PubMed]
    [Google Scholar]
  7. Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003; 53:1253–1260 [View Article] [PubMed]
    [Google Scholar]
  8. Chen H, Jogler M, Rohde M, Klenk H-P, Busse H-J et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62:2835–2843 [View Article] [PubMed]
    [Google Scholar]
  9. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead-zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017; 67:2160–2165 [View Article] [PubMed]
    [Google Scholar]
  10. Xue H, Piao C-G, Wang X-Z, Lin C-L, Guo M-W et al. Sphingomonas aeria sp. nov., isolated from air. Int J Syst Evol Microbiol 2018; 68:2866–2871 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang Y-Q, Chen Y-G, Li W-J, Tian X-P, Xu L-H et al. Sphingomonas yunnanensis sp. nov., a novel Gram-negative bacterium from a contaminated plate. Int J Syst Evol Microbiol 2005; 55:2361–2364 [View Article] [PubMed]
    [Google Scholar]
  12. Choi T-E, Liu Q-M, Yang J-E, Sun S, Kim S-Y et al. Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 2010; 48:760–766 [View Article] [PubMed]
    [Google Scholar]
  13. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR et al. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 2001; 51:1491–1498 [View Article] [PubMed]
    [Google Scholar]
  14. Gao J-L, Sun P, Wang X-M, Cheng S, Lv F et al. Sphingomonas zeicaulis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016; 66:3755–3760 [View Article] [PubMed]
    [Google Scholar]
  15. Huang H-Y, Li J, Zhao G-Z, Zhu W-Y, Yang L-L et al. Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. Int J Syst Evol Microbiol 2012; 62:1576–1580 [View Article] [PubMed]
    [Google Scholar]
  16. Feng GD, Xiong X, Zhu HH, Li HP. Sphingomonas difficilis sp. nov., a difficultly cultivable bacterium that grows on solid but not in liquid medium, isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2017; 67:5273–5278 [View Article] [PubMed]
    [Google Scholar]
  17. Asaf S, Numan M, Khan AL, Al-Harrasi A. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol 2020; 40:138–152 [View Article] [PubMed]
    [Google Scholar]
  18. Khan AL, Waqas M, Kang S-M, Al-Harrasi A, Hussain J et al. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 2014; 52:689–695 [View Article] [PubMed]
    [Google Scholar]
  19. Luo Y, Wang F, Huang Y, Zhou M, Gao J et al. Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Front Microbiol 2019; 10:1221 [View Article] [PubMed]
    [Google Scholar]
  20. Madhaiyan M, Saravanan VS, Wirth JS, Alex THH, Kim S-J et al. Sphingomonas palmae sp. nov. and Sphingomonas gellani sp. nov., endophytically associated phyllosphere bacteria isolated from economically important crop plants. Antonie van Leeuwenhoek 2020; 113:1617–1632 [View Article] [PubMed]
    [Google Scholar]
  21. Cha I, Kang H, Kim H, Joh K. Sphingomonas ginkgonis sp. nov., isolated from phyllosphere of Ginkgo biloba. Int J Syst Evol Microbiol 2019; 69:3224–3229 [View Article]
    [Google Scholar]
  22. Rivas R, Abril A, Trujillo ME, Velázquez E. Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. Int J Syst Evol Microbiol 2004; 54:2147–2150 [View Article] [PubMed]
    [Google Scholar]
  23. Talà A, Lenucci M, Gaballo A, Durante M, Tredici SM et al. Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. Int J Syst Evol Microbiol 2013; 63:72–79 [View Article] [PubMed]
    [Google Scholar]
  24. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  30. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9:678–687 [View Article] [PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  32. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  34. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  35. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  37. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  38. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  41. Busse H-J, Hauser E, Kämpfer P. Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 2005; 55:2565–2569 [View Article]
    [Google Scholar]
  42. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  43. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article] [PubMed]
    [Google Scholar]
  44. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Microbiology, 3rd edn. Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  45. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  46. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  47. Collins MD. Isoprenoidquinones. In Goodfellow M, O’Donnell AG. eds Chemical Methods in Prokaryotic Systematics Chichester: Johb Wiley & Sons Ltd; 1994 pp 265–309
    [Google Scholar]
  48. Busse HJ, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  49. Scherer P, Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol 1983; 154:1315–1322 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005492
Loading
/content/journal/ijsem/10.1099/ijsem.0.005492
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error