1887

Abstract

A co-culture of a novel thermoacidophilic, obligate symbiotic archaeon, designated as strain MJ1, with its specific host archaeon strain MJ1HA was obtained from a terrestrial hot spring in Japan. Strain MJ1 grew in the co-culture under aerobic conditions. Coccoid cells of strain MJ1 were 200–500 nm in diameter, and attached to the MJ1HA cells in the co-culture. The ranges and optima of the growth temperature and pH of strain MJ1 in the co-culture were 60–75 °C (optimum, 65–70 °C) and pH 1.0–4.0 (optimum, pH 2.5), respectively. Core lipids of dialkyl glycerol tetraethers (GDGT)−3 and GDGT-4 were highly abundant in MJ1 cells concentrated from the co-culture. Strain MJ1 has a small genome (0.67 Mbp) lacking genes for biosynthesis of essential biomolecules, such as nucleotides, lipids and ATP. The genomic DNA G+C content was 24.9 mol%. The 16S rRNA gene sequence of strain MJ1 was most closely related to that of the cultivated species, ‘ strain N7A (85.8 % similarity). Based on phylogenetic and physiological characteristics, we propose the name gen. nov., sp. nov. to accommodate the strain MJ1 (=JCM 33616=DSM 111728). In addition, we propose the names fam. nov., ord. nov., and class. nov. to accommodate the novel genus.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005489
2022-08-22
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/8/ijsem005489.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005489&mimeType=html&fmt=ahah

References

  1. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 2002; 417:63–67 [View Article]
    [Google Scholar]
  2. Wurch L, Giannone RJ, Belisle BS, Swift C, Utturkar S et al. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat Commun 2016; 7:12115 [View Article] [PubMed]
    [Google Scholar]
  3. St John E, Liu Y, Podar M, Stott MB, Meneghin J et al. A new symbiotic nanoarchaeote (Candidatus nanoclepta minutus) and its host (Zestosphaera tikiterensis gen. nov., sp. nov.) from a new Zealand hot spring. Syst Appl Microbiol 2019; 42:94–106 [View Article] [PubMed]
    [Google Scholar]
  4. Hamm JN, Erdmann S, Eloe-Fadrosh EA, Angeloni A, Zhong L et al. Unexpected host dependency of antarctic Nanohaloarchaeota. Proc Natl Acad Sci U S A 2019; 116:14661–14670 [View Article] [PubMed]
    [Google Scholar]
  5. La Cono V, Messina E, Rohde M, Arcadi E, Ciordia S et al. Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides. Proc Natl Acad Sci USA 2020; 117:20223–20234 [View Article] [PubMed]
    [Google Scholar]
  6. Golyshina OV, Toshchakov SV, Makarova KS, Gavrilov SN, Korzhenkov AA et al. 'ARMAN' archaea depend on association with euryarchaeal host in culture and in situ. Nat Commun 2017; 8:60 [View Article]
    [Google Scholar]
  7. Sakai HD, Nur N, Kato S, Yuki M, Shimizu M et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Proc Natl Acad Sci U S A 2022; 119:e2115449119 [View Article]
    [Google Scholar]
  8. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013; 499:431–437 [View Article]
    [Google Scholar]
  9. Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol 2018; 16:629–645 [View Article]
    [Google Scholar]
  10. Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett 2019; 366:fnz008-fnz [View Article]
    [Google Scholar]
  11. Hamerly T, Tripet BP, Tigges M, Giannone RJ, Wurch L et al. Untargeted metabolomics studies employing NMR and LC-MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis. Metabolomics 2015; 11:895–907 [View Article]
    [Google Scholar]
  12. Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B et al. A complex endomembrane system in the Archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front Microbiol 2017; 8:1072 [View Article]
    [Google Scholar]
  13. Jahn U, Summons R, Sturt H, Grosjean E, Huber H. Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I. Arch Microbiol 2004; 182:404–413 [View Article]
    [Google Scholar]
  14. Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W et al. Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two Archaea. J Bacteriol 2008; 190:1743–1750 [View Article]
    [Google Scholar]
  15. Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV et al. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol Direct 2013; 8:9 [View Article]
    [Google Scholar]
  16. Jarett JK, Nayfach S, Podar M, Inskeep W, Ivanova NN et al. Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. Microbiome 2018; 6:161 [View Article] [PubMed]
    [Google Scholar]
  17. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article] [PubMed]
    [Google Scholar]
  18. Itoh T, Suzuki K, Nakase T. Occurrence of introns in the 16S rRNA genes of members of the genus Thermoproteus. Arch Microbiol 1998; 170:155–161 [View Article] [PubMed]
    [Google Scholar]
  19. Hohn MJ, Hedlund BP, Huber H. Detection of 16S rDNA sequences representing the novel phylum “Nanoarchaeota”: indication for a wide distribution in high temperature biotopes. Syst Appl Microbiol 2002; 25:551–554 [View Article] [PubMed]
    [Google Scholar]
  20. Itoh T, Miura T, Sakai HD, Kato S, Ohkuma M et al. Sulfuracidifex tepidarius gen. nov., sp. nov. and transfer of Sulfolobus metallicus Huber and Stetter 1992 to the genus Sulfuracidifex as Sulfuracidifex metallicus comb. nov. Int J Syst Evol Microbiol 2020; 70:1837–1842 [View Article]
    [Google Scholar]
  21. Ohkuma M, Noda S, Hattori S, Iida T, Yuki M et al. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci USA 2015; 112:10224–10230 [View Article]
    [Google Scholar]
  22. Burggraf S, Mayer T, Amann R, Schadhauser S, Woese CR et al. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 1994; 60:3112–3119 [View Article]
    [Google Scholar]
  23. Nishihara M, Koga Y. Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. J Biochem 1987; 101:997–1005 [View Article]
    [Google Scholar]
  24. Hopmans EC, Schouten S, Pancost RD, van der Meer MT, Sinninghe Damsté JS. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 2000; 14:585–589 [View Article]
    [Google Scholar]
  25. Kaneko M, Kitajima F, Naraoka H. Stable hydrogen isotope measurement of archaeal ether-bound hydrocarbons. Org Geochem 2011; 42:166–172 [View Article]
    [Google Scholar]
  26. Itoh T, Onishi M, Kato S, Iino T, Sakamoto M et al. Athalassotoga saccharophila gen. nov., sp. nov., isolated from an acidic terrestrial hot spring, and proposal of Mesoaciditogales ord. nov. and Mesoaciditogaceae fam. nov. in the phylum Thermotogae. Int J Syst Evol Microbiol 2016; 66:1045–1051 [View Article]
    [Google Scholar]
  27. Kato S, Itoh T, Ohkuma M. Complete genome sequence of Athalassotoga saccharophila strain NAS-01, a deep-branching thermophilic lineage in the phylum Thermotogae. Microbiol Resour Announc 2020; 9:e00322-20 [View Article] [PubMed]
    [Google Scholar]
  28. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: esolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  29. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  31. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article] [PubMed]
    [Google Scholar]
  32. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999; 27:29–34 [View Article] [PubMed]
    [Google Scholar]
  33. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  34. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–93 [View Article] [PubMed]
    [Google Scholar]
  35. Zdobnov EM, Apweiler R. InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001; 17:847–848 [View Article] [PubMed]
    [Google Scholar]
  36. Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 2018; 46:D624–D632 [View Article] [PubMed]
    [Google Scholar]
  37. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  38. Pourcel C, Touchon M, Villeriot N, Vernadet J-P, Couvin D et al. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res 2020; 48:D535–D544 [View Article] [PubMed]
    [Google Scholar]
  39. Kato S, Nakano S, Kouduka M, Hirai M, Suzuki K et al. Metabolic potential of as-yet-uncultured archaeal lineages of Candidatus Hydrothermarchaeota thriving in deep-sea metal sulfide deposits. Microbes Environ 2019; 34:293–303 [View Article] [PubMed]
    [Google Scholar]
  40. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  41. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  42. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  43. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  44. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  45. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic Era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  46. Veith A, Klingl A, Zolghadr B, Lauber K, Mentele R et al. Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol Microbiol 2009; 73:58–72 [View Article] [PubMed]
    [Google Scholar]
  47. Rachel R. Cell envelopes of Crenarchaeota and Nanoarchaeota. In König H, Claus H, Varma A. eds Prokaryotic Cell Wall Compounds Berlin, Heidelberg: Springer; 2010 pp 271–291
    [Google Scholar]
  48. Junglas B, Briegel A, Burghardt T, Walther P, Wirth R et al. Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell-cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography. Arch Microbiol 2008; 190:395–408 [View Article] [PubMed]
    [Google Scholar]
  49. Huber G, Spinnler C, Gambacorta A, Stetter KO. Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 1989; 12:38–47 [View Article]
    [Google Scholar]
  50. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 2003; 100:12984–12988 [View Article] [PubMed]
    [Google Scholar]
  51. Randau L, Munch R, Hohn MJ, Jahn D, Soll D. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves. Nature 2005; 433:537–541 [View Article]
    [Google Scholar]
  52. Albers SV, Jarrell KF. The archaellum: an update on the unique archaeal motility structure. Trends Microbiol 2018; 26:351–362 [View Article]
    [Google Scholar]
  53. Miller AF. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 2012; 586:585–595 [View Article]
    [Google Scholar]
  54. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta 2011; 1807:1398–1413 [View Article]
    [Google Scholar]
  55. Murali R, Gennis RB, Hemp J. Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA' in archaea. ISME J 2021 [View Article]
    [Google Scholar]
  56. Borisov VB, Forte E, Davletshin A, Mastronicola D, Sarti P et al. Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress. FEBS Lett 2013; 587:2214–2218 [View Article] [PubMed]
    [Google Scholar]
  57. Vázquez-Campos X, Kinsela AS, Bligh MW, Payne TE, Wilkins MR et al. Genomic insights into the archaea inhabiting an Australian radioactive legacy site. Front Microbiol 2021; 12:3069 [View Article]
    [Google Scholar]
  58. Auernik KS, Maezato Y, Blum PH, Kelly RM. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 2008; 74:682–692 [View Article]
    [Google Scholar]
  59. Parker C, Tindall B, Garrity G. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article] [PubMed]
    [Google Scholar]
  60. Oren A, Arahal DR, Rosselló-Móra R, Sutcliffe IC, Moore ERB. Emendation of Rules 5b, 8, 15 and 22 of the International Code of Nomenclature of Prokaryotes to include the rank of phylum. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  61. Whitman WB, Oren A, Chuvochina M, da Costa MS, Garrity GM et al. Proposal of the suffix -ota to denote phyla. Addendum to “Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes.”. Int J Syst Evol Microbiol 2018; 68:967–969 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005489
Loading
/content/journal/ijsem/10.1099/ijsem.0.005489
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error