1887

Abstract

A facultatively anaerobic, Gram-negative, rod-shaped bacterial strain designated as LLDRA6, was isolated from heavy metal contaminated soils collected near a ceased smelting factory at Zhuzhou, Hunan Province, China. Strain LLDRA6 has the ability to oxidize Mn(II) and generate biogenic manganese oxides. The strain can grow in a wide range of temperature from 10–42°C and pH from 5 to 10. Comparative analysis of its complete 16S rRNA gene sequence suggests that strain LLDRA6 is highly similar to species within the genus . The complete genome of LLDRA6 is 4 342 370 bp with 40.18 mol% of G+C content and contains no plasmids. In comparison to the genomes of type strains in , LLDRA6 shows average nucleotide identity values between 76.60 and 80.89 %, and digital DNA–DNA hybridization values in a range of 21.2–24.6 %. Both multilocus sequence analysis and genomic phylogenetics indicate a new taxonomic status for LLDRA6 in . Chemotaxonomic analyses for LLDRA6 show that the predominant cellular fatty acids are C, C and cyclo-C, accounting for 32.7, 16.1 and 10.3 % of total fatty acids, respectively. The polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, four unidentified aminolipids, one unidentified phospholipid and three unidentified lipids. Within the cell wall, ribose and -diaminopimelic acid are the characteristic constituents for saccharides and amino acids, respectively. Respiratory quinones on cell membranes are composed of menaquinone (MK) and ubiquinone (coenzyme Q), including MK-8 (100.0 %), Q-7 (13.7 %) and Q-8 (86.3 %). Moreover, the positive results from -lyxose and -mannitol fermentation tests indicate that LLDRA6 is totally different from all the type strains within the genus . In summary, strain LLDRA6 represents a novel species in the genus , for which the name sp. nov. (type strain LLDRA6=CCTCC AB 2021154=KCTC 92091) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005474
2022-08-05
2024-06-25
Loading full text...

Full text loading...

References

  1. Ewing WH. The tribe Proteeae: its nomenclature and taxonomy. Int J Syst Bacteriol 1962; 12:93–102 [View Article]
    [Google Scholar]
  2. Juneja P, Lazzaro BP. Providencia sneebia sp. nov. and Providencia burhodogranariea sp. nov., isolated from wild Drosophila melanogaster. Int J Syst Evol Microbiol 2009; 59:1108–1111 [View Article]
    [Google Scholar]
  3. Muller HE, O’Hara CM, Fanning GR, Hickman-Brenner FW, Swenson JM et al. Providencia heimbachae, a new species of enterobacteriaceae isolated from animals. Int J Syst Bacteriol 1986; 36:252–256 [View Article]
    [Google Scholar]
  4. Hu Y, Feng Y, Zhang X, Zong Z. Providencia huaxiensis sp. nov., recovered from a human rectal swab. Int J Syst Evol Microbiol 2019; 69:2638–2643 [View Article] [PubMed]
    [Google Scholar]
  5. Brenner DJ, Farmer JJ, Fanning GR, Steigerwalt AG, Klykken P et al. Deoxyribonucleic acid relatedness of Proteus and Providencia Species. Int J Syst Bacteriol 1978; 28:269–282 [View Article]
    [Google Scholar]
  6. Hickman-Brenner FW, Farmer JJ, Steigerwalt AG, Brenner DJ. Providencia rustigianii: a new species in the family Enterobacteriaceae formerly known as Providencia alcalifaciens biogroup 3. J Clin Microbiol 1983; 17:1057–1060 [View Article]
    [Google Scholar]
  7. Khunthongpan S, Sumpavapol P, Tanasupawat S, Benjakul S, H-Kittikun A. Providencia thailandensis sp. nov., isolated from seafood processing wastewater. J Gen Appl Microbiol 2013; 59:185–190 [View Article] [PubMed]
    [Google Scholar]
  8. Somvanshi VS, Lang E, Sträubler B, Spröer C, Schumann P et al. Providencia vermicola sp. nov., isolated from infective juveniles of the entomopathogenic nematode Steinernema thermophilum. Int J Syst Evol Microbiol 2006; 56:629–633 [View Article]
    [Google Scholar]
  9. Hickman-Brenner FW, Fanning GR, Muller HE, Brenner DJ. Notes: Priority of Providencia rustigianii Hickman-Brenner, Farmer, Steigerwalt, and Brenner 1983 over Providencia friedericiana Müller 1983. Int J Syst Bacteriol 1986; 36:565–566 [View Article]
    [Google Scholar]
  10. Ksentini I, Gharsallah H, Sahnoun M, Schuster C, Hamli Amri S et al. Providencia entomophila sp. nov., a new bacterial species associated with major olive pests in Tunisia. PLoS One 2019; 14:e0223943 [View Article] [PubMed]
    [Google Scholar]
  11. Manzano-Marín A, Oceguera-Figueroa A, Latorre A, Jiménez-García LF, Moya A. Solving a bloody mess: B-vitamin independent metabolic convergence among gammaproteobacterial obligate endosymbionts from blood-feeding arthropods and the leech haementeria officinalis. Genome Biol Evol 2015; 7:2871–2884 [View Article] [PubMed]
    [Google Scholar]
  12. Zhou K, Liang J, Dong X, Zhang P, Feng C et al. Identification and characterization of a novel chromosomal aminoglycoside 2’-N-acetyltransferase, AAC(2’)-if, from an isolate of a novel Providencia species, Providencia wenzhouensis R33. Front Microbiol 2021; 12:711037 [View Article] [PubMed]
    [Google Scholar]
  13. Andolfo G, Schuster C, Gharsa HB, Ruocco M, Leclerque A. Genomic analysis of the nomenclatural type strain of the nematode-associated entomopathogenic bacterium Providencia vermicola. BMC Genomics 2021; 22:708 [View Article]
    [Google Scholar]
  14. Tan L, Dong H, Liu X, He J, Xu H et al. Mechanism of palladium(II) biosorption by Providencia vermicola. RSC Adv 2017; 7:7060–7072
    [Google Scholar]
  15. Li D, Li R, Ding Z, Ruan X, Luo J et al. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. Chemosphere 2020; 241:125039 [View Article] [PubMed]
    [Google Scholar]
  16. Abo-Amer AE, Ramadan AB, Abo-State M, Abu-Gharbia MA, Ahmed HE. Biosorption of aluminum, cobalt, and copper ions by Providencia rettgeri isolated from wastewater. J Basic Microbiol 2013; 53:477–488 [View Article] [PubMed]
    [Google Scholar]
  17. Holguera JG, Etui ID, Jensen LHS, Peña J. Contaminant loading and competitive access of Pb, Zn and Mn(III) to vacancy sites in biogenic MnO2. Chemical Geology 2018; 502:76–87 [View Article]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  21. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  28. Stackebrandt E, Goebel BM. Taxonomic Note: a place for dna-dna reassociation and 16s rrna sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  29. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  30. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  31. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  32. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: A phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article] [PubMed]
    [Google Scholar]
  33. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  35. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  38. Chen S, Ding Z, Chen J, Luo J, Ruan X et al. A soil-borne Mn(II)-oxidizing bacterium of Providencia sp. exploits a strategy of superoxide production coupled to hydrogen peroxide consumption to generate Mn oxides. Arch Microbiol 2022; 204:168 [View Article]
    [Google Scholar]
  39. Su J, Bao P, Bai T, Deng L, Wu H et al. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS One 2013; 8:e60573 [View Article]
    [Google Scholar]
  40. Schlosser D, Höfer C. Laccase-catalyzed oxidation of Mn(2+) in the presence of natural Mn(3+) chelators as a novel source of extracellular H(2)O(2) production and its impact on manganese peroxidase. Appl Environ Microbiol 2002; 68:3514–3521 [View Article] [PubMed]
    [Google Scholar]
  41. Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG et al. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ Microbiol 2007; 9:944–953 [View Article]
    [Google Scholar]
  42. Tang X, Zhai L, Lin Y, Yao S, Wang L et al. Halomonas alkalicola sp. nov., isolated from a household product plant. Int J Syst Evol Microbiol 2017; 67:1546–1550 [View Article] [PubMed]
    [Google Scholar]
  43. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  44. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, WA W, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  45. Park S-K, Kim M-S, Jung M-J, Nam Y-D, Park E-J et al. Brachybacterium squillarum sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 2011; 61:1118–1122 [View Article] [PubMed]
    [Google Scholar]
  46. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Microbiology, 3rd edn. Washington, DC: American Society of Microbiology; 2007 pp 330–393
    [Google Scholar]
  47. Vaas LAI, Sikorski J, Michael V, Göker M, Klenk H-P. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012; 7:e34846 [View Article] [PubMed]
    [Google Scholar]
  48. Sharma J, Shamim K, Dubey SK, Meena RM. Metallothionein assisted periplasmic lead sequestration as lead sulfite by Providencia vermicola strain SJ2A. Sci Total Environ 2017; 579:359–365 [View Article]
    [Google Scholar]
  49. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  50. Romano I, Nicolaus B, Lama L, Trabasso D, Caracciolo G et al. Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. Syst Appl Microbiol 2001; 24:342–352 [View Article]
    [Google Scholar]
  51. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  52. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  53. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article] [PubMed]
    [Google Scholar]
  54. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005474
Loading
/content/journal/ijsem/10.1099/ijsem.0.005474
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error