Skip to content
1887

Abstract

A Gram-negative, motile, rod-shaped marine bacterium, designated RKSG542, was isolated from the sea sponge collected at a depth of 20 m off the west coast of San Salvador, The Bahamas. Phylogenetic analyses based on 16S rRNA gene and genome sequences place RKSG542 in a monophyletic clade with members of the genus . Strain RKSG542 shared <96.7 % 16S rRNA gene sequence similarity,<72.2 % average nucleotide identity,<66.7 % average amino acid identity, and <24.8 % digital DNA–DNA hybridization with type strains of the family . Growth occurred at 22–37 °C (22–30 °C optimum), at pH 7–9 (pH 7 optimum), and with 0.5–5 % (w/v) NaCl (2 % optimum). The predominant fatty acids (>10 %) were summed feature 8 (C 6 and/or C 7), C and C, and the respiratory lipoquinone was Q-10. The polar lipid composition comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unknown aminolipids, six unknown phospholipids and four unknown lipids. The DNA G+C content of the genome sequence was 52.5 mol%. Based on the results of biochemical, phylogenetic and genomic analyses, RKSG542 (=TSD-76=LMG 29867) is presented here as the type strain of a novel species within the genus (family , order , class ), for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005457
2022-08-02
2025-01-17
Loading full text...

Full text loading...

References

  1. Lee YK, Lee J-H, Lee HK. Microbial symbiosis in marine sponges. J Microbiol 2001; 39:254–264
    [Google Scholar]
  2. Fieseler L, Horn M, Wagner M, Hentschel U. Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 2004; 70:3724–3732 [View Article] [PubMed]
    [Google Scholar]
  3. Wang G. Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 2006; 33:545–551 [View Article] [PubMed]
    [Google Scholar]
  4. Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol 2006; 55:167–177 [View Article] [PubMed]
    [Google Scholar]
  5. Webster NS, Taylor MW. Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 2012; 14:335–346 [View Article] [PubMed]
    [Google Scholar]
  6. Thacker RW, Freeman CJ. Sponge–microbe symbioses: recent advances and new directions. Adv Mar Biol 2012; 62:57–111 [View Article] [PubMed]
    [Google Scholar]
  7. Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 2016; 7:1–12 [View Article] [PubMed]
    [Google Scholar]
  8. Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL et al. The sponge microbiome project. Gigascience 2017; 6:1–7 [View Article] [PubMed]
    [Google Scholar]
  9. Dat TTH, Steinert G, Cuc NTK, Smidt H, Sipkema D. Bacteria cultivated from sponges and bacteria not yet cultivated from sponges–a review. Front Microbiol 2021; 12:1–18 [View Article] [PubMed]
    [Google Scholar]
  10. Taylor JA, Palladino G, Wemheuer B, Steinert G, Sipkema D et al. Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts. ISME J 2021; 15:503–519 [View Article] [PubMed]
    [Google Scholar]
  11. Thakur NL, Muller WEG. Biotechnological potential of marine sponges. Curr Sci 2004; 86:1506–1512
    [Google Scholar]
  12. Thomas TRA, Kavlekar DP, LokaBharathi PA. Marine drugs from sponge–microbe association–A review. Mar Drugs 2010; 8:1417–1468 [View Article] [PubMed]
    [Google Scholar]
  13. Anjum K, Abbas SQ, Shah SAA, Akhter N, Batool S et al. Marine sponges as a drug treasure. Biomol Ther 2016; 24:347–362 [View Article] [PubMed]
    [Google Scholar]
  14. Garrity GM, Bell JA, Lilburn T, Class I. Alphaproteobacteria class. nov. In: Brenner DJ, Krieg NR, Staley JT (eds). In Bergey’s Manual Syst Bacteriol Boston, MA: Springer; 2005 pp 1–574 [View Article]
    [Google Scholar]
  15. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 2005; 309:1242–1245 [View Article] [PubMed]
    [Google Scholar]
  16. Muñoz-Gómez SA, Hess S, Burger G, Lang BF, Susko E et al. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. Elife 2019; 8:1–23 [View Article]
    [Google Scholar]
  17. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:1–112 [View Article] [PubMed]
    [Google Scholar]
  18. Shieh WY, Lin Y-T, Jean WD. Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 2004; 54:2307–2312 [View Article] [PubMed]
    [Google Scholar]
  19. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer-Verlag; 2014 pp 439–512 [View Article]
    [Google Scholar]
  20. Romano S. Ecology and biotechnological potential of bacteria belonging to the genus Pseudovibrio. Appl Environ Microbiol 2018; 84:1–16 [View Article] [PubMed]
    [Google Scholar]
  21. Romano S, Fernàndez-Guerra A, Reen FJ, Glöckner FO, Crowley SP et al. Comparative genomic analysis reveals a diverse repertoire of genes involved in prokaryote-eukaryote interactions within the Pseudovibrio genus. Front Microbiol 2016; 7:1–20 [View Article] [PubMed]
    [Google Scholar]
  22. Xu Y, Li Q, Tian R, Lai Q, Zhang Y. Pseudovibrio hongkongensis sp. nov., isolated from a marine flatworm. Antonie van Leeuwenhoek 2015; 108:127–132 [View Article] [PubMed]
    [Google Scholar]
  23. Zhang Y, Li Q, Tian R, Lai Q, Xu Y. Pseudovibrio stylochi sp. nov., isolated from a marine flatworm. Int J Syst Evol Microbiol 2016; 66:2025–2029 [View Article] [PubMed]
    [Google Scholar]
  24. Fukunaga Y, Kurahashi M, Tanaka K, Yanagi K, Yokota A et al. Pseudovibrio ascidiaceicola sp. nov., isolated from ascidians (sea squirts). Int J Syst Evol Microbiol 2006; 56:343–347 [View Article] [PubMed]
    [Google Scholar]
  25. Sertan-de Guzman AA, Predicala RZ, Bernardo EB, Neilan BA, Elardo SP et al. Pseudovibrio denitrificans strain Z143-1, a heptylprodigiosin-producing bacterium isolated from a Philippine tunicate. FEMS Microbiol Lett 2007; 277:188–196 [View Article] [PubMed]
    [Google Scholar]
  26. Bondarev V, Richter M, Romano S, Piel J, Schwedt A et al. The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol 2013; 15:2095–2113 [View Article] [PubMed]
    [Google Scholar]
  27. Raina J-B, Tapiolas D, Motti CA, Foret S, Seemann T et al. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 2016; 4:1–20 [View Article] [PubMed]
    [Google Scholar]
  28. Moreira APB, Tonon LAC, Pereira C do V, Alves N, Amado-Filho GM et al. Culturable heterotrophic bacteria associated with healthy and bleached scleractinian Madracis decactis and the fireworm Hermodice carunculata from the remote St. Peter and St. Paul Archipelago, Brazil. Curr Microbiol 2014; 68:38–46 [View Article]
    [Google Scholar]
  29. O’Halloran JA, Barbosa TM, Morrissey JP, Kennedy J, O’Gara F et al. Diversity and antimicrobial activity of Pseudovibrio spp. from Irish marine sponges. J Appl Microbiol 2011; 110:1495–1508 [View Article] [PubMed]
    [Google Scholar]
  30. O’Halloran JA, Barbosa TM, Morrissey JP, Kennedy J, Dobson ADW et al. Pseudovibrio axinellae sp. nov., isolated from an Irish marine sponge. Int J Syst Evol Microbiol 2013; 63:141–145 [View Article] [PubMed]
    [Google Scholar]
  31. Fróes AM, Freitas TC, Vidal L, Appolinario LR, Leomil L et al. Genomic attributes of novel symbiont Pseudovibrio brasiliensis sp. nov. isolated from the sponge Arenosclera brasiliensis. Front Mar Sci 2018; 5:1–10 [View Article]
    [Google Scholar]
  32. Hosoya S, Yokota A. Pseudovibrio japonicus sp. nov., isolated from coastal seawater in Japan. Int J Syst Evol Microbiol 2007; 57:1952–1955 [View Article] [PubMed]
    [Google Scholar]
  33. Donachie SP, Bowman JP, Alam M. Nesiotobacter exalbescens gen. nov., sp. nov., a moderately thermophilic alphaproteobacterium from an Hawaiian hypersaline lake. Int J Syst Evol Microbiol 2006; 56:563–567 [View Article] [PubMed]
    [Google Scholar]
  34. Schwedt A, Seidel M, Dittmar T, Simon M, Bondarev V et al. Substrate use of Pseudovibrio sp. growing in ultra-oligotrophic seawater. PLoS One 2015; 10:1–16 [View Article] [PubMed]
    [Google Scholar]
  35. Nicacio KJ, Ióca LP, Fróes AM, Leomil L, Appolinario LR et al. Cultures of the marine bacterium Pseudovibrio denitrificans Ab134 produce bromotyrosine-derived alkaloids previously only isolated from marine sponges. J Nat Prod 2017; 80:235–240 [View Article] [PubMed]
    [Google Scholar]
  36. Correa H, Haltli B, Duque C, Kerr R. Bacterial communities of the gorgonian octocoral Pseudopterogorgia elisabethae. Microb Ecol 2013; 66:972–985 [View Article] [PubMed]
    [Google Scholar]
  37. Lane DJ. Nucleic Acid Techniques in Bacterial Systematics New York, NY: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  38. Goldberg SR, Haltli BA, Correa H, Kerr RG. Description of Sansalvadorimonas verongulae gen. nov., sp. nov., a gammaproteobacterium isolated from the marine sponge Verongula gigantea. Int J Syst Evol Microbiol 2018; 68:2006–2014 [View Article]
    [Google Scholar]
  39. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  40. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  41. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  42. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  43. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  44. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [View Article]
    [Google Scholar]
  45. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  46. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  47. Jain A, Jain R, Jain S. Basic Techniques in Biochemistry, Microbiology and Molecular Biology. In Motility Testing – Hanging Drop Method and Stab. Basic Techniques in Biochemistry, Microbiology and Molecular Biology New York, NY: Springer Protocols Handbooks. Humana; 2020 [View Article]
    [Google Scholar]
  48. Reiner K. Carbohydrate fermentation protocol. Am Soc Microbiol 2012;1–10
    [Google Scholar]
  49. Goldberg SR, Haltli BA, Correa H, Kerr RG. Curvivirga aplysinae gen. nov., sp. nov., a marine bacterium isolated from the sea sponge Aplysina fistularis. Int J Syst Evol Microbiol 2021; 71:1–11 [View Article]
    [Google Scholar]
  50. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article] [PubMed]
    [Google Scholar]
  51. Kahlmeter G, Brown DFJ, Goldstein FW, MacGowan AP, Mouton JW et al. European Committee on Antimicrobial Susceptibility Testing (EUCAST) technical notes on antimicrobial susceptibility testing. Clin Microbiol Infect 2006; 12:501–503 [View Article] [PubMed]
    [Google Scholar]
  52. Sasser M. Technical note 101: Identification of bacteria by gas chromatography of cellular fatty acids. MIDI; 2001
  53. Goldberg SR, Correa H, Haltli BA, Kerr RG. Fulvivirga aurantia sp. nov. and Xanthovirga aplysinae gen. nov., sp. nov., marine bacteria isolated from the sponge Aplysina fistularis, and emended description of the genus Fulvivirga. Int J Syst Evol Microbiol 2020; 70:2766–2781 [View Article]
    [Google Scholar]
  54. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  55. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  56. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  57. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  58. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  59. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  60. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on A standard genome relatedness index. MBio 2020; 11:1–20 [View Article]
    [Google Scholar]
  61. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [View Article] [PubMed]
    [Google Scholar]
  62. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:1–9 [View Article] [PubMed]
    [Google Scholar]
  63. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  64. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  65. Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD et al. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME COMMUN 2021; 1:1–16 [View Article]
    [Google Scholar]
  66. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  67. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  68. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  69. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–5 [View Article] [PubMed]
    [Google Scholar]
  70. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  71. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  72. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  73. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  74. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005457
Loading
/content/journal/ijsem/10.1099/ijsem.0.005457
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error