1887

Abstract

A novel, Gram-stain-positive, aerobic, non-endospore-forming, non-motile and rod-shaped bacterium designated PO-11 was isolated from sediment of karst cave collected in Libo county, Guizhou Province, PR China. The isolate grew optimally on R2A agar at 25 °C, pH 8.0 and with 0.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that PO-11 belonged to the genus and was most closely related to TGA (98.3 % sequence similarity), LC6 (97.7 %) and CCM1646 (97.1 %). Genome sequencing revealed a genome size of 4 073 119 bp and the genomic DNA G+C content was 66.16 mol%. Its DNA–DNA relatedness values with TGA, LC6 and CCM1646 were 23.0, 22.9 and 23.2 %, respectively. The main fatty acids were anteiso-C, anteiso-C and iso-C. The major respiratory quinone was MK-9(H). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, glycolipid, phosphatidylethanolamine, phosphatidylinositol and unidentified lipids. Thus, based on phylogenetic and phenotypic and chemotaxonomic data, strain PO-11 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is strain PO-11 (=CCTCC AB 2021070=LMG 32459).

Funding
This study was supported by the:
  • Natural Science Foundation of Guizhou Province (Award Qiankehejichu [2019]1223)
    • Principle Award Recipient: ZhengFang
  • Mission on Nano Science and Technology (Award Grant No. [2019]5617, [2019]5655)
    • Principle Award Recipient: QingbeiWeng
  • Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province (Award (U1812401))
    • Principle Award Recipient: QingbeiWeng
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005445
2022-06-28
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/6/ijsem005445.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005445&mimeType=html&fmt=ahah

References

  1. Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 1947; 54:291–303 [View Article] [PubMed]
    [Google Scholar]
  2. Koch C, Schumann P, Stackebrandt E. Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. Int J Syst Bacteriol 1995; 45:837–839 [View Article] [PubMed]
    [Google Scholar]
  3. Busse H-J. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016; 66:9–37 [View Article]
    [Google Scholar]
  4. Kämpfer P, Busse H-J, Schumann P, Criscuolo A, Clermont D et al. Arthrobacter ulcerisalmonis sp. nov., isolated from an ulcer of a farmed Atlantic salmon (Salmo salar), and emended description of the genus Arthrobacter sensu lato. Int J Syst Evol Microbiol 2020; 70:1963–1968 [View Article] [PubMed]
    [Google Scholar]
  5. Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K et al. Bergey’s Manual of Systematic Bacteriology New York, NY: Springer New York; 2012 p 578
    [Google Scholar]
  6. Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. The Genus Arthrobacter. The Prokaryotes: Actinobacteria Berlin, Heidelberg: Springer; 2014 pp 105–133
    [Google Scholar]
  7. Park Y, Kook M, Ngo HTT, Kim K-Y, Park S-Y et al. Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove. Int J Syst Evol Microbiol 2014; 64:3069–3074 [View Article] [PubMed]
    [Google Scholar]
  8. Lee J-Y, Hyun D-W, Soo Kim P, Sik Kim H, Shin N-R et al. Arthrobacter echini sp. nov., isolated from the gut of a purple sea urchin, Heliocidaris crassispina. Int J Syst Evol Microbiol 2016; 66:1887–1893 [View Article] [PubMed]
    [Google Scholar]
  9. İnce İA, Demirbağ Z, Katı H. Arthrobacter pityocampae sp. nov., isolated from Thaumetopoea pityocampa (Lep., Thaumetopoeidae). Int J Syst Evol Microbiol 2014; 64:3384–3389 [View Article]
    [Google Scholar]
  10. Storms V, Devriese LA, Coopman R, Schumann P, Vyncke F et al. Arthrobacter gandavensis sp. nov., for strains of veterinary origin. Int J Syst Evol Microbiol 2003; 53:1881–1884 [View Article] [PubMed]
    [Google Scholar]
  11. Yan R, Liu D, Fu Y, Zhang Y, Ju H et al. Arthrobacter celericrescens sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:3093–3099 [View Article] [PubMed]
    [Google Scholar]
  12. Zhang Q, Oh M, Kim J-H, Kanjanasuntree R, Konkit M et al. Arthrobacter paludis sp. nov., isolated from a marsh. Int J Syst Evol Microbiol 2018; 68:47–51 [View Article] [PubMed]
    [Google Scholar]
  13. Yan R, Fu Y, Liu D, Jiang S, Ju H et al. Arthrobacter silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2018; 68:3892–3896 [View Article] [PubMed]
    [Google Scholar]
  14. Lee SA, Kim JM, Cho H, Kim S-J, Ahn J-H et al. Arthrobacter silviterrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:4546–4551 [View Article] [PubMed]
    [Google Scholar]
  15. Yu X-Y, Zhang L, Ren B, Yang N, Liu M et al. Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil. Int J Syst Evol Microbiol 2015; 65:896–901 [View Article] [PubMed]
    [Google Scholar]
  16. Hoang V-A, Kim Y-J, Nguyen N-L, Yang D-C. Arthrobacter gyeryongensis sp. nov., isolated from soil of a Gynostemma pentaphyllum field. Int J Syst Evol Microbiol 2014; 64:420–425 [View Article] [PubMed]
    [Google Scholar]
  17. Dastager SG, Liu Q, Qin L, Tang S-K, Krishnamurthi S et al. Arthrobacter enclensis sp. nov., isolated from sediment sample. Arch Microbiol 2014; 196:775–782 [View Article]
    [Google Scholar]
  18. Margesin R, Schumann P, Spröer C, Gounot A-M. Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 2004; 54:2067–2072 [View Article] [PubMed]
    [Google Scholar]
  19. Cheng J, Zhang M-Y, Zhao J-C, Xu H, Zhang Y et al. Arthrobacter ginkgonis sp. nov., an actinomycete isolated from rhizosphere of Ginkgo biloba L. Int J Syst Evol Microbiol 2017; 67:319–324 [View Article] [PubMed]
    [Google Scholar]
  20. Chang H-W, Bae J-W, Nam Y-D, Kwon H-Y, Park JR et al. Arthrobacter subterraneus sp. nov., isolated from deep subsurface water of the South Coast of Korea. J Microbiol Biotechnol 2007; 17:1875–1879 [PubMed]
    [Google Scholar]
  21. Chen Y-G, Tang S-K, Zhang Y-Q, Li Z-Y, Yi L-B et al. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie van Leeuwenhoek 2009; 96:63–70 [View Article] [PubMed]
    [Google Scholar]
  22. Ding L, Hirose T, Yokota A. Four novel Arthrobacter species isolated from filtration substrate. Int J Syst Evol Microbiol 2009; 59:856–862 [View Article] [PubMed]
    [Google Scholar]
  23. Heyrman J, Verbeeren J, Schumann P, Swings J, De Vos P. Six novel Arthrobacter species isolated from deteriorated mural paintings. Int J Syst Evol Microbiol 2005; 55:1457–1464 [View Article] [PubMed]
    [Google Scholar]
  24. Reddy GS, Aggarwal RK, Matsumoto GI, Shivaji S. Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 2000; 50 Pt 4:1553–1561 [View Article] [PubMed]
    [Google Scholar]
  25. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article] [PubMed]
    [Google Scholar]
  28. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  29. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article] [PubMed]
    [Google Scholar]
  30. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  31. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  32. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–74 [View Article] [PubMed]
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  36. Cha I, Kang H, Kim H, Bae S, Joh K. Hymenobacter ginkgonis sp. nov., isolated from bark of Ginkgo biloba. Int J Syst Evol Microbiol 2020; 70:4760–4766 [View Article] [PubMed]
    [Google Scholar]
  37. Sasser M. MIDI technical note 101. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark: MIDI; 1990
    [Google Scholar]
  38. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  39. Goodfellow EM, Minnikin DE, Minnikin D, Goodfellow E. Chemical Methods in Bacterial Systematics: Chemical Methods in Bacterial Systematics London: Academic Press New York; 1985 pp 262–267
    [Google Scholar]
  40. Lu X, Wu C, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiol 1989; 171:3619–3628 [View Article]
    [Google Scholar]
  41. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  42. Li CT. Arthrobacter sedimenti sp. nov., isolated from river sediment in Yuantouzhu Park, China. Arch of Microbiol 2020
    [Google Scholar]
  43. Trinh NH, Kim J. Arthrobacter terricola sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 71:425–435 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005445
Loading
/content/journal/ijsem/10.1099/ijsem.0.005445
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error