1887

Abstract

A novel actinomycete, designated strain RS11V-5, was isolated from rhizosphere soil of L. collected from Roi Et Province, Thailand, and its taxonomic position was evaluated. Cells of strain RS11V-5 were Gram-stain-positive, aerobic, and non-motile. Whole-cell hydrolysates contained -diaminopimelic acid, arabinose, galactose, glucose and ribose. MK-8(H) was detected as the predominant menaquinone of this strain. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylmethylethanolamine, hydroxy-phosphatidylethanolamine, an unidentified phospholipid, an unidentified aminolipid and an unidentified glycolipid. The major fatty acids were iso-C, C and C ω7/C ω6. Phylogenetic analyses based on the 16S rRNA gene sequences showed that strain RS11V-5 belonged to the genus and had high 16S rRNA sequence similarity of 99.3 % to KCTC 29062 and less than 98.4 % to other members of the genus . The DNA G+C content of the strain RS11V-5 was 73.3 mol%. Strain RS11V-5 showed 46.5 % digital DNA–DNA hybridization, 92.2 % orthologous average nucleotide identity (OrthoANI), 90.2 % ANI based on and 92.7 % ANI based on MUMmer to KCTC 29062. Based its phenotypic, genotypic, phylogenetic and chemotaxonomic characteristics, strain RS11V-5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RS11V-5 (=TBRC 15286=NBRC 115296).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005430
2022-06-14
2022-07-06
Loading full text...

Full text loading...

References

  1. Henssen A. Morphology and system of thermophilic actinomycetes. Arch Mikrobiol 1957; 26:373–414 [View Article]
    [Google Scholar]
  2. Huang Y, Goodfellow M. Genus Pseudonocardia. In Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. New York: Springer; 2012 pp 1305–1314
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  4. Sahin N, Veyisoglu A, Tatar D, Spröer C, Cetin D et al. Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. and Pseudonocardia kujensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1703–1711 [View Article]
    [Google Scholar]
  5. Klaysubun C, Lipun K, Duangmal K. Pseudonocardia acidicola sp. nov., a novel actinomycete isolated from peat swamp forest soil. Int J Syst Evol Microbiol 2020; 70:5648–5653 [View Article]
    [Google Scholar]
  6. Zhang D-F, Jiang Z, Li L, Liu B-B, Zhang X-M et al. Pseudonocardia sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2014; 64:745–750 [View Article] [PubMed]
    [Google Scholar]
  7. Tian X-P, Long L-J, Li S-M, Zhang J, Xu Y et al. Pseudonocardia antitumoralis sp. nov., a deoxynyboquinone-producing actinomycete isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2013; 63:893–899 [View Article] [PubMed]
    [Google Scholar]
  8. Parra J, Soldatou S, Rooney LM, Duncan KR. Pseudonocardia abyssalis sp. nov. and Pseudonocardia oceani sp. nov., two novel actinomycetes isolated from the deep Southern Ocean. Int J Syst Evol Microbiol 2021; 71:5032 [View Article]
    [Google Scholar]
  9. Sujarit K, Sujada N, Kudo T, Ohkuma M, Pathom-aree W et al. Pseudonocardia thailandensis sp. nov., an actinomycete isolated from a subterranean termite nest. Int J Syst Evol Microbiol 2017; 67:2773–2778 [View Article] [PubMed]
    [Google Scholar]
  10. Cuesta G, Soler A, Alonso JL, Ruvira MA, Lucena T et al. Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge. Antonie van Leeuwenhoek 2013; 103:135–142 [View Article] [PubMed]
    [Google Scholar]
  11. Duangmal K, Thamchaipenet A, Matsumoto A, Takahashi Y. Pseudonocardia acaciae sp. nov., isolated from roots of Acacia auriculiformis A. Cunn. ex Benth. Int J Syst Evol Microbiol 2009; 59:1487–1491 [View Article] [PubMed]
    [Google Scholar]
  12. Kaewkla O, Franco CMM. Pseudonocardia pini sp. nov., an endophytic actinobacterium isolated from roots of the pine tree Callitris preissii. Arch Microbiol 2021; 203:3407–3413 [View Article] [PubMed]
    [Google Scholar]
  13. Mo P, Zhao Y, Liu J, Xu Z, Gao J. Pseudonocardia broussonetiae sp. nov., an endophytic actinomycete isolated from the roots of Broussonetia papyrifera. Int J Syst Evol Microbiol 2021; 71:004680
    [Google Scholar]
  14. Hayakawa M, Nonomura H. Humic acid–vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65:501–509 [View Article]
    [Google Scholar]
  15. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  16. Wellington E. Preservation of actinomycete inoculum in frozen glycerol. Microbios Lett 1979; 6:151–157
    [Google Scholar]
  17. Kieser T, Foundation JI, Bibb MJ, Buttner MJ, Chater KF et al. Practical Streptomyces Genetics John Innes Foundation; 2000
    [Google Scholar]
  18. Muangham S, Pathom-Aree W, Duangmal K. Melanogenic actinomycetes from rhizosphere soil-antagonistic activity against Xanthomonas oryzae and plant-growth-promoting traits. Can J Microbiol 2015; 61:164–170 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  26. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  27. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  30. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  33. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  34. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  35. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  36. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [View Article] [PubMed]
    [Google Scholar]
  37. Waksman SA. The Actinomycetes, a Summary of Current Knowledge New York: Ronald; 1967
    [Google Scholar]
  38. Kelly KL. Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  39. Himaman W, Thamchaipenet A, Pathom-aree W, Duangmal K. Actinomycetes from Eucalyptus and their biological activities for controlling Eucalyptus leaf and shoot blight. Microbiol Res 2016; 188–189:42–52 [View Article] [PubMed]
    [Google Scholar]
  40. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  41. Kuester E, Williams ST. Selection of media for isolation of streptomycetes. Nature 1964; 202:928–929 [View Article] [PubMed]
    [Google Scholar]
  42. Becker B, Lechevalier MP, Lechevalier HA. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 1965; 13:236–243 [View Article] [PubMed]
    [Google Scholar]
  43. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  44. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  45. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151:828–837 [View Article] [PubMed]
    [Google Scholar]
  46. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  47. Uchida K, Kudo T, Suzuki K-I, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999; 45:49–56 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005430
Loading
/content/journal/ijsem/10.1099/ijsem.0.005430
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error