1887

Abstract

Strain F4 (=KACC 22401=JCM 34836), a novel Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped bacterium, was isolated from camel () faeces. The newly identified bacterial strain F4 was grown in Reasoner's 2A medium [0–2 % (w/v) NaCl (optimum, 0 %), pH 7.0–8.0 (optimum, pH 7.0), and 18–40 °C (optimum, 30 °C)]. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that strain F4 belonged to the genus , with its closest neighbours being DSM 19056 (98.0 %), CCUG 52764 (97.3 %), WG4 (95.7 %) and Chj70 (94.7 %). Complete genome sequence of strain F4 was obtained using a hybrid assembly pipeline integrating sequences obtained using both the Oxford Nanopore and Illumina platforms. Genomic comparisons of strain F4 with type species in the genus were conducted using digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity, resulting in values of ≤20.5, ≤77.9 and ≤80.8 %, respectively. The genomic DNA G+C content of type strain F4 was 39.7 mol%. The major fatty acids of the strain F4 were anteiso-C and iso-C, and MK-6 was its major respiratory quinone. Moreover, the major polar lipid of strain F4 was phosphatidylethanolamine. The genome of strain F4 harbours only one antibiotic resistance gene () encoding a -lactamase, which attributes -lactam antibiotic resistance. Based on the results of our chemotaxonomic, genotypic and phenotype analyses, strain F4 is identified as a novel species of the genus , for which the name sp. nov. is proposed.

Funding
This study was supported by the:
  • National Institute of Biological Resources (Award NIBR202002108)
    • Principle Award Recipient: WoojunPark
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005405
2022-05-31
2024-03-29
Loading full text...

Full text loading...

References

  1. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. Notes: new perspectives in the classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Oh WT, Jun JW, Giri SS, Yun S, Kim HJ et al. Isolation of Chryseobacterium siluri sp. nov., from liver of diseased catfish (Silurus asotus). Heliyon 2020; 6:e03454 [View Article]
    [Google Scholar]
  3. Vaneechoutte M, Kämpfer P, De Baere T, Avesani V, Janssens M et al. Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. Int J Syst Evol Microbiol 2007; 57:2623–2628 [View Article] [PubMed]
    [Google Scholar]
  4. Herzog P, Winkler I, Wolking D, Kämpfer P, Lipski A. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 2008; 58:26–33 [View Article]
    [Google Scholar]
  5. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 2008; 8:125 [View Article] [PubMed]
    [Google Scholar]
  6. Yang Q, Wang R, Ren S, Szoboszlay M, Moe LA. Practical survey on antibiotic-resistant bacterial communities in livestock manure and manure-amended soil. J Environ Sci Health B 2016; 51:14–23 [View Article]
    [Google Scholar]
  7. Calderón G, García E, Rojas P, García E, Rosso M et al. Chryseobacterium indologenes infection in a newborn: a case report. J Med Case Rep 2011; 5:10 [View Article]
    [Google Scholar]
  8. Chiu CH, Waddingdon M, Greenberg D, Schreckenberger PC, Carnahan AM. Atypical Chryseobacterium meningosepticum and meningitis and sepsis in newborns and the immunocompromised, Taiwan. Emerg Infect Dis 2000; 6:481–486 [View Article]
    [Google Scholar]
  9. Hantsis-Zacharov E, Shakéd T, Senderovich Y, Halpern M. Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow’s milk. Int J Syst Evol Microbiol 2008; 58:2635–2639 [View Article]
    [Google Scholar]
  10. Kämpfer P, Fallschissel K, Avendaño-Herrera R. Chryseobacterium chaponense sp. nov., isolated from farmed Atlantic salmon (Salmo salar). Int J Syst Evol Microbiol 2011; 61:497–501 [View Article]
    [Google Scholar]
  11. Loch TP, Faisal M. Emerging flavobacterial infections in fish: A review. J Adv Res 2015; 6:283–300 [View Article] [PubMed]
    [Google Scholar]
  12. Zamora L, Vela AI, Palacios MA, Sánchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium viscerum sp. nov., isolated from diseased fish. Int J Syst Evol Microbiol 2012; 62:2934–2940 [View Article] [PubMed]
    [Google Scholar]
  13. Zamora L, Fernández-Garayzábal JF, Palacios MA, Sánchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium oncorhynchi sp. nov., isolated from rainbow trout (Oncorhynchus mykiss). Syst Appl Microbiol 2012; 35:24–29 [View Article] [PubMed]
    [Google Scholar]
  14. Loch TP, Faisal M. Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2014; 64:1573–1579 [View Article] [PubMed]
    [Google Scholar]
  15. Sharma P, Gupta SK, Diene SM, Rolain JM. Whole-genome sequence of Chryseobacterium oranimense, a colistin-resistant bacterium isolated from a cystic fibrosis patient in France. Antimicrob Agents Chemother 2015; 59:1696–1706 [View Article] [PubMed]
    [Google Scholar]
  16. Maravić A, Skočibušić M, Samanić I, Puizina J. Profile and multidrug resistance determinants of Chryseobacterium indologenes from seawater and marine fauna. World J Microbiol Biotechnol 2013; 29:515–522 [View Article] [PubMed]
    [Google Scholar]
  17. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [View Article] [PubMed]
    [Google Scholar]
  18. Kämpfer P, Vaneechoutte M, Lodders N, De Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009; 59:2421–2428 [View Article] [PubMed]
    [Google Scholar]
  19. Hantsis-Zacharov E, Halpern M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 2007; 57:2344–2348 [View Article] [PubMed]
    [Google Scholar]
  20. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  21. Kim M, Shin B, Lee J, Park HY, Park W. Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming Microcystis aeruginosa. Sci Rep 2019; 9:20416 [View Article] [PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  23. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  26. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  29. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article] [PubMed]
    [Google Scholar]
  30. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  31. Bellais S, Poirel L, Naas T, Girlich D, Nordmann P. Genetic-biochemical analysis and distribution of the Ambler class A beta-lactamase CME-2, responsible for extended-spectrum cephalosporin resistance in Chryseobacterium (Flavobacterium) meningosepticum. Antimicrob Agents Chemother 2000; 44:1–9 [View Article] [PubMed]
    [Google Scholar]
  32. González LJ, Vila AJ. Carbapenem resistance in Elizabethkingia meningoseptica is mediated by metallo-β-lactamase BlaB. Antimicrob Agents Chemother 2012; 56:1686–1692 [View Article] [PubMed]
    [Google Scholar]
  33. Eckroat TJ, Greguske C, Hunnicutt DW. The Type 9 secretion system is required for Flavobacterium johnsoniae biofilm formation. Front Microbiol 2021; 12:660887 [View Article] [PubMed]
    [Google Scholar]
  34. Luo Y, Lai Q, Yuan J, Huang Z. Pleionea sediminis sp. nov., isolated from coastal sediment and emendation of the description of the genus Pleionea. Int J Syst Evol Microbiol 2019; 69:3524–3528 [View Article] [PubMed]
    [Google Scholar]
  35. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  36. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). MIDI technical note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  37. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005405
Loading
/content/journal/ijsem/10.1099/ijsem.0.005405
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error