1887

Abstract

A Gram-stain-negative, non-spore-forming, motile, aerobic bacterium (strain C21) was isolated from coral and identified using polyphasic identification approach. Global alignment of 16S rRNA gene sequences indicated that strain C21 shares 95.7 % sequence identity to its closest neighbour, NBRC 110095, followed by other type strains with identities of lower than 95 %. The average nucleotide identity and average amino acid identity values between strain C21 and NBRC 110095 were 69.6 and 64.8 %, respectively, indicating that strain C21 may represent a new species in a new genus. Phylogenetic analysis based on 16S rRNA gene and phylogenomic results indicated that strain C21 forms a distinct branch in the family . Cellular fatty acids and polar lipids could also readily distinguish strain C21 from closely related type strains. Therefore, strain C21 is suggested to represent a new species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is C21 (=MCCC 1K03260=KCTC 62317).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41866004)
    • Principle Award Recipient: GuanghuaWang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005401
2022-05-31
2022-06-25
Loading full text...

Full text loading...

References

  1. Spring S, Scheuner C, Göker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281 [View Article] [PubMed]
    [Google Scholar]
  2. Distel DL, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 2002; 52:2261–2269 [View Article]
    [Google Scholar]
  3. Altamia MA, Shipway JR, Stein D, Betcher MA, Fung JM et al. Teredinibacter waterburyi sp. nov., a marine, cellulolytic endosymbiotic bacterium isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter. Int J Syst Evol Microbiol 2020; 70:2388–2394 [View Article] [PubMed]
    [Google Scholar]
  4. Altamia MA, Shipway JR, Stein D, Betcher MA, Fung JM et al. Teredinibacter haidensis sp. nov., Teredinibacter purpureus sp. nov. and Teredinibacter franksiae sp. nov., marine, cellulolytic endosymbiotic bacteria isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter. Int J Syst Evol Microbiol 2021; 71:4627 [View Article] [PubMed]
    [Google Scholar]
  5. Romanenko LA, Tanaka N, Frolova GM. Umboniibacter marinipuniceus gen. nov., sp. nov., a marine gammaproteobacterium isolated from the mollusc Umbonium costatum from the Sea of Japan. Int J Syst Evol Microbiol 2010; 60:603–609 [View Article] [PubMed]
    [Google Scholar]
  6. Nishijima M, Adachi K, Sano H, Yamasato K. Marinibactrum halimedae gen. nov., sp. nov., a gammaproteobacterium isolated from a marine macroalga. Int J Syst Evol Microbiol 2015; 65:3866–3871 [View Article] [PubMed]
    [Google Scholar]
  7. Ling S-K, Xia J, Liu Y, Chen G-J, Du Z-J. Agarilytica rhodophyticola gen. nov., sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol 2017; 67:3778–3783 [View Article]
    [Google Scholar]
  8. Wang G, Zheng X, Xu S, Dang G, Su H et al. Exilibacterium tricleocarpae gen. nov., sp. nov., a marine bacterium from Coralline algae tricleocarpa sp. Int J Syst Evol Microbiol 2020; 70:3427–3432 [View Article]
    [Google Scholar]
  9. Chen M-H, Sheu S-Y, Arun AB, Young C-C, Chen CA et al. Pseudoteredinibacter isoporae gen. nov., sp. nov., a marine bacterium isolated from the reef-building coral Isopora palifera. . Int J Syst Evol Microbiol 2011; 61:1887–1893 [View Article]
    [Google Scholar]
  10. Suarez C, Ratering S, Kramer I, Schnell S. Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio. Int J Syst Evol Microbiol 2014; 64:481–486 [View Article] [PubMed]
    [Google Scholar]
  11. Sheu SY, Huang CW, Hsu MY, Sheu C, Chen WM. Cellvibrio zantedeschiae sp. nov., isolated from the roots of Zantedeschia aethiopica. Int J Syst Evol Microbiol 2017; 67:3615–3621 [View Article] [PubMed]
    [Google Scholar]
  12. Blackall LL, Hayward AC, Sly LI. Cellulolytic and dextranolytic Gram-negative bacteria: revival of the genus Cellvibrio. J Appl Bacteriol 1985; 59:81–97 [View Article]
    [Google Scholar]
  13. Mergaert J, Lednická D, Goris J, Cnockaert MC, De Vos P et al. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int J Syst Evol Microbiol 2003; 53:465–471 [View Article] [PubMed]
    [Google Scholar]
  14. Lim J-M, Jeon CO, Lee J-C, Song S-M, Kim K-Y et al. Marinimicrobium koreense gen. nov., sp. nov. and Marinimicrobium agarilyticum sp. nov., novel moderately halotolerant bacteria isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 2006; 56:653–657 [View Article]
    [Google Scholar]
  15. Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW et al. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 2005; 55:1545–1549 [View Article]
    [Google Scholar]
  16. Shieh WY, Liu TY, Lin SY, Jean WD, Chen JS. Simiduia agarivorans gen. nov., sp. nov., a marine, agarolytic bacterium isolated from shallow coastal water from Keelung, Taiwan. Int J Syst Evol Microbiol 2008; 58:895–900 [View Article]
    [Google Scholar]
  17. Kim B-C, Poo H, Lee KH, Kim MN, Park D-S et al. Simiduia areninigrae sp. nov., an agarolytic bacterium isolated from sea sand. Int J Syst Evol Microbiol 2012; 62:906–911 [View Article] [PubMed]
    [Google Scholar]
  18. Park S, Kim SI, Jung YT, Yoon JH. Simiduia curdlanivorans sp. nov., a curdlan-degrading bacterium isolated from the junction between the ocean and a freshwater spring, and emended description of the genus Simiduia. Int J Syst Evol Microbiol 2014; 64:3695–3700 [View Article] [PubMed]
    [Google Scholar]
  19. Tanaka N, Romanenko LA, Svetashev VI, Mikhailov VV. Simiduia litorea sp. nov., isolated from seashore sediments of the Sea of Japan. Int J Syst Evol Microbiol 2014; 64:2688–2692 [View Article] [PubMed]
    [Google Scholar]
  20. Lucena T, Arahal DR, Sanz-Sáez I, Acinas SG, Sánchez O et al. Thalassocella blandensis gen. nov., sp. nov., a novel member of the family Cellvibrionaceae. Int J Syst Evol Microbiol 2020; 70:1231–1239 [View Article]
    [Google Scholar]
  21. Iwaki H, Yamamoto T, Hasegawa Y. Isolation of marine xylene-utilizing bacteria and characterization of Halioxenophilus aromaticivorans gen. nov., sp. nov. and its xylene degradation gene cluster. FEMS Microbiol Lett 2018; 365:fny042 [View Article]
    [Google Scholar]
  22. Iwaki H, Takada K, Hasegawa Y. Maricurvus nonylphenolicus gen. nov., sp. nov., a nonylphenol-degrading bacterium isolated from seawater. FEMS Microbiol Lett 2012; 327:142–147 [View Article]
    [Google Scholar]
  23. Iwaki H, Fujioka M, Hasegawa Y. Isolation and characterization of marine nonylphenol-degrading bacteria and description of Pseudomaricurvus alkylphenolicus gen. nov., sp. nov. Curr Microbiol 2014; 68:167–173 [View Article] [PubMed]
    [Google Scholar]
  24. Altamia MA, Shipway JR, Stein D, Betcher MA, Fung JM et al. Teredinibacter haidensis sp. nov., Teredinibacter purpureus sp. nov. and Teredinibacter franksiae sp. nov., marine, cellulolytic endosymbiotic bacteria isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter. Int J Syst Evol Microbiol 2021; 71:4627 [View Article] [PubMed]
    [Google Scholar]
  25. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  26. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  27. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  28. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  30. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  33. Swofford DL. PAUP: Phylogenetic analysis using parsimony, version 3.1.1 Champaign, IL: Illinois Natural History Survey; 1993
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  35. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  36. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  37. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  38. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article] [PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  40. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  41. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  42. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  43. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  44. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  45. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on A standard genome relatedness index. mBio 2020; 11:e02475–19 [View Article]
    [Google Scholar]
  46. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  47. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. eds Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp 345–401
    [Google Scholar]
  48. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  49. Vreeland RH, Hochstein LI, Vreeland RH, Hochstein LI. Lipids of extreme halophiles. In The Biology of Halophilic Bacteria Boca Raton: CRC Press; 1993 pp 135–161 [View Article]
    [Google Scholar]
  50. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005401
Loading
/content/journal/ijsem/10.1099/ijsem.0.005401
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error