1887

Abstract

A novel rod-shaped, Gram-stain-negative, aerobic bacterial strain, designated Cra20, was isolated from the root surface of collected in the Tianshan Mountains, Xinjiang, PR China. Phylogenetic analysis based on 16S rRNA gene sequences, indicated that strain Cra20 was affiliated with the genus , and was most closely related to ZFGT-11 (99.0 %), KIS18-15 (97.8%) and THG-DT81 (97.2 %). The average nucleotide identity values between strain Cra20, ZFGT-11, KIS18-15 and THG-DT81 were 86.2, 84.2 and 78.2 %, respectively. The genomic DNA G+C content of strain Cra20 was 65.6 mol% (whole genome sequence), and Q-10 was the predominant ubiquinone. The major cellular fatty acids of strain Cra20 were summed feature 8 (comprising C 6 and/or C 7, 67.3 %) and C 2-OH (6.4 %). On the basis of genotypic, phenotypic and biochemical data, strain Cra20 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Cra20 (=CGMCC 1.15510=NBRC 112697).

Funding
This study was supported by the:
  • Collaborative Innovation Center for Modern Science and Technology and Industrial Development of Jiangxi Traditional Medicine (Award GJJ201723)
    • Principle Award Recipient: YangLuo
  • China's Assistance Program to Developing Countries (Award No KY201501008)
    • Principle Award Recipient: HongmeiSheng
  • National Natural Science Foundation of China (Award No 31570488)
    • Principle Award Recipient: HongmeiSheng
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005396
2022-05-31
2024-10-10
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article]
    [Google Scholar]
  2. Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003; 53:1253–1260 [View Article] [PubMed]
    [Google Scholar]
  3. Chen H, Jogler M, Rohde M, Klenk H-P, Busse H-J et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62:2835–2843 [View Article] [PubMed]
    [Google Scholar]
  4. Heidler von Heilborn D, Reinmüller J, Hölzl G, Meier-Kolthoff JP, Woehle C et al. Sphingomonas aliaeris sp. nov., a new species isolated from pork steak packed under modified atmosphere. Int J Syst Evol Microbiol 2021; 71:004973 [View Article] [PubMed]
    [Google Scholar]
  5. Kang M, Chhetri G, Kim J, Kim I, Seo T. Sphingomonas sabuli sp. nov., a carotenoid-producing bacterium isolated from beach sand. Int J Syst Evol Microbiol 2021; 71:004896 [View Article]
    [Google Scholar]
  6. Park C, Kim M, Lee BH, Lee KE, Park W. Sphingomonas changnyeongensis sp. nov. isolated from the Hapcheon-Changnyeong barrage area in the Nakdong river. Int J Syst Evol Microbiol 2020; 70:6091–6097 [View Article] [PubMed]
    [Google Scholar]
  7. Busse H-J, Kämpfer P, Denner EBM. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999; 23:242–251 [View Article] [PubMed]
    [Google Scholar]
  8. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article] [PubMed]
    [Google Scholar]
  9. Ko Y, Hwang WM, Kim M, Kang K, Ahn T-Y. Sphingomonas silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:2704–2710 [View Article] [PubMed]
    [Google Scholar]
  10. Zhou X-K, Mi Q-L, Yao J-H, Wu H, Liu X-M et al. Sphingomonas tabacisoli sp. nov., a member of the genus Sphingomonas, isolated from rhizosphere soil of Nicotiana tabacum L. Int J Syst Evol Microbiol 2018; 68:2574–2579 [View Article]
    [Google Scholar]
  11. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV. Sphingomonas japonica sp. nov., isolated from the marine crustacean Paralithodes camtschatica. Int J Syst Evol Microbiol 2009; 59:1179–1182 [View Article] [PubMed]
    [Google Scholar]
  12. Kämpfer P, Busse H-J, McInroy JA, Glaeser SP. Sphingomonas zeae sp. nov., isolated from the stem of Zea mays. Int J Syst Evol Microbiol 2015; 65:2542–2548 [View Article] [PubMed]
    [Google Scholar]
  13. Song LC, Niu XG, Zhang NW, Li TJ. Effect of biochar-immobilized Sphingomonas sp. PJ2 on bioremediation of PAHs and bacterial community composition in saline soil. Chemosphere 2021; 279:130427 [View Article] [PubMed]
    [Google Scholar]
  14. Gong B, Wu P, Huang Z, Li Y, Dang Z et al. Enhanced degradation of phenol by Sphingomonas sp. GY2B with resistance towards suboptimal environment through adsorption on kaolinite. Chemosphere 2016; 148:388–394 [View Article] [PubMed]
    [Google Scholar]
  15. Wang Q, Ge C, Xu S, Wu Y, Sahito ZA et al. The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes. BMC Plant Biol 2020; 20:63 [View Article] [PubMed]
    [Google Scholar]
  16. Khan AL, Waqas M, Kang S-M, Al-Harrasi A, Hussain J et al. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 2014; 52:689–695 [View Article] [PubMed]
    [Google Scholar]
  17. Luo Y, Wang F, Huang Y, Zhou M, Gao J et al. Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Front Microbiol 2019; 10:1221 [View Article]
    [Google Scholar]
  18. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  19. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  22. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998; 47:77–89 [View Article] [PubMed]
    [Google Scholar]
  23. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  24. Herbst L, Fischer M. Ancestral sequence reconstruction with maximum parsimony. Bull Math Biol 2017; 79:2865–2886 [View Article] [PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  27. Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2012; 40:D130–5 [View Article] [PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  31. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. eds Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp 21–33
    [Google Scholar]
  32. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  33. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  34. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  37. Talà A, Lenucci M, Gaballo A, Durante M, Tredici SM et al. Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. Int J Syst Evol Microbiol 2013; 63:72–79 [View Article] [PubMed]
    [Google Scholar]
  38. Sheu S-Y, Chen Y-L, Chen W-M. Sphingomonas fonticola sp. nov., isolated from spring water. Int J Syst Evol Microbiol 2015; 65:4495–4502 [View Article] [PubMed]
    [Google Scholar]
  39. Kaushal M, Wani SP. Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 2015; 66:35–42 [View Article]
    [Google Scholar]
  40. Wang J, Zhang Y, Li Y, Wang X, Nan W et al. Endophytic microbes Bacillus sp. LZR216-regulated root development is dependent on polar auxin transport in Arabidopsis seedlings. Plant Cell Rep 2015; 34:1075–1087 [View Article] [PubMed]
    [Google Scholar]
  41. Fincheira P, Parra L, Mutis A, Parada M, Quiroz A. Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings. Microbiol Res 2017; 203:47–56 [View Article] [PubMed]
    [Google Scholar]
  42. Luo Y, Zhou M, Zhao Q, Wang F, Gao J et al. Complete genome sequence of Sphingomonas sp. Cra20, a drought resistant and plant growth promoting rhizobacteria. Genomics 2020; 112:3648–3657 [View Article] [PubMed]
    [Google Scholar]
  43. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  44. Son HM, Kook MC, Tran HTH, Kim KY, Park SY et al. Sphingomonas kyeonggiense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 105: [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005396
Loading
/content/journal/ijsem/10.1099/ijsem.0.005396
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error