1887

Abstract

Cells of members of the family , phylum , are generally obligate anaerobic rods. Strains D2Q-14 and D2Q-11 were isolated from sediment of the saline lake Manisi in the Xinjiang Uygur Autonomous Region, PR China. In this study, we employed a polyphasic approach and whole genome analysis of the two isolates. Cells of both isolates were Gram-stain-positive rods that were motile by means of flagella and could utilize sulphate, thiosulphate, elemental sulphur and nitrate as electron acceptors. Phylogenetic analyses based on 16S rRNA gene and whole genome sequences indicated that strains D2Q-14 and D2Q-11 constituted a coherent cluster affiliated to the family . In addition, genome analysis revealed that strain D2Q-14harboured one nonribosomal peptide synthetase gene cluster, making up 1.4 % of the entire genome. The genome-based analysis, including average nucleotide identity, average amino acid identity and DNA–DNA hybridization, biochemical, phenotypic and chemotaxonomic characterization, indicated that strains D2Q-14 and D2Q-11 represented two novel species of a novel genus in the family , for which we propose the names gen. nov., sp. nov. and sp. nov., with the type strains D2Q-14 (=KCTC 15986=MCCC 1K04634) and D2Q-11 (=KCTC 15985=MCCC 1K04391), respectively.

Funding
This study was supported by the:
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2021FY100900)
    • Principle Award Recipient: RanZhang
  • National Natural Science Foundation of China (Award 320000001)
    • Principle Award Recipient: NotApplicable
  • Natural Science Foundation of Zhejiang Province (Award LQ19C010006)
    • Principle Award Recipient: RanZhang
  • Science and Technology Basic Resources Investigation Program of China (Award 2017FY100300)
    • Principle Award Recipient: RanZhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005377
2022-05-13
2024-03-29
Loading full text...

Full text loading...

References

  1. Buchanan RE. Studies on the nomenclature and classification of the bacteria: III. The families of the Eubacteriales. J Bacteriol 1917; 2:347–350 [View Article]
    [Google Scholar]
  2. Rainey FA. Class II. Clostridia class nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. et al eds Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer; 2009 pp 736–737
    [Google Scholar]
  3. Seo B, Jeon K, Baek I, Lee YM, Baek K et al. Clostridium fessum sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2021; 71:71 [View Article] [PubMed]
    [Google Scholar]
  4. Fang M-X, Zhang W-W, Zhang Y-Z, Tan H-Q, Zhang X-Q et al. Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int J Syst Evol Microbiol 2012; 62:3018–3023 [View Article]
    [Google Scholar]
  5. Klouche N, Fardeau M-L, Lascourrèges J-F, Cayol J-L, Hacene H et al. Geosporobacter subterraneus gen. nov., sp. nov., a spore-forming bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 2007; 57:1757–1761 [View Article]
    [Google Scholar]
  6. Zhang X, Zeng X, Li X, Alain K, Jebbar M et al. Anaeromicrobium sediminis gen. nov., sp. nov., a fermentative bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2017; 67:1462–1467 [View Article]
    [Google Scholar]
  7. Pikuta EV, Itoh T, Krader P, Tang J, Whitman WB et al. Anaerovirgula multivorans gen. nov., sp. nov., a novel spore-forming, alkaliphilic anaerobe isolated from Owens Lake, California, USA. Int J Syst Evol Microbiol 2006; 56:2623–2629 [View Article] [PubMed]
    [Google Scholar]
  8. Inglett KS, Bae HS, Aldrich HC, Hatfield K, Ogram AV et al. Clostridium chromiireducens sp. nov., isolated from Cr(VI)-contaminated soil. Int J Syst Evol Microbiol 2011; 61:2626–2631 [View Article] [PubMed]
    [Google Scholar]
  9. Cirne DG, Delgado OD, Marichamy S, Mattiasson B. Clostridium lundense sp. nov., a novel anaerobic lipolytic bacterium isolated from bovine rumen. Int J Syst Evol Microbiol 2006; 56:625–628 [View Article] [PubMed]
    [Google Scholar]
  10. Rezgui R, Ben Ali Gam Z, Ben Hamed S, Fardeau M-L, Cayol J-L et al. Sporosalibacterium faouarense gen. nov., sp. nov., a moderately halophilic bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2011; 61:99–104 [View Article]
    [Google Scholar]
  11. Ehrlich GG, Goerlitz DF, Bourell JH, Eisen GV, Godsy EM et al. Liquid chromatographic procedure for fermentation product analysis in the identification of anaerobic bacteria. Appl Environ Microbiol 1981; 42:878–885 [View Article] [PubMed]
    [Google Scholar]
  12. Ogg CD, Patel BKC. Thermotalea metallivorans gen. nov., sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer. Int J Syst Evol Microbiol 2009; 59:964–971 [View Article] [PubMed]
    [Google Scholar]
  13. Claus DA. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article] [PubMed]
    [Google Scholar]
  14. Wu X-Y, Zheng G, Zhang W-W, Xu X-W, Wu M et al. Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake. Int J Syst Evol Microbiol 2010; 60:2540–2543 [View Article] [PubMed]
    [Google Scholar]
  15. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  16. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  17. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric Acid. J appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  18. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  19. Tindall BJ, Sikorski J, Smibert RM, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. eds Methods for General and Molecular Microbiology, 3rd ed. Washington: ASM; 2007 pp 330–393
    [Google Scholar]
  20. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [View Article] [PubMed]
    [Google Scholar]
  21. Xu X-W, Wu Y-H, Zhou Z, Wang C-S, Zhou Y-G et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007; 57:1619–1624 [View Article]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  27. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article] [PubMed]
    [Google Scholar]
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  29. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  30. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article] [PubMed]
    [Google Scholar]
  31. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  32. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  33. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 2013; 41:1–10 [View Article] [PubMed]
    [Google Scholar]
  34. Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci 2020; 29:28–35 [View Article] [PubMed]
    [Google Scholar]
  35. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  36. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J et al. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  38. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  39. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  40. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  41. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  42. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  44. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  46. Liebgott P-P, Joseph M, Fardeau M-L, Cayol J-L, Falsen E et al. Clostridiisalibacter paucivorans gen. nov., sp. nov., a novel moderately halophilic bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 2008; 58:61–67 [View Article] [PubMed]
    [Google Scholar]
  47. Podosokorskaya OA, Merkel AY, Heerden E van, Cason ED, Kopitsyn DS et al. Sporosalibacterium tautonense sp. nov., a thermotolerant, halophilic, hydrolytic bacterium isolated from a gold mine, and emended description of the genus Sporosalibacterium. Int J Syst Evol Microbiol 2017; 67:1457–1461 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005377
Loading
/content/journal/ijsem/10.1099/ijsem.0.005377
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error