1887

Abstract

Modified atmosphere (MA) packaging plays an important role in improving food quality and safety. By using different gas mixtures and packaging materials the shelf life of fresh produce can significantly be increased. A Gram-negative-staining, rod-shaped, orange-pigmented strain DH-B6, has been isolated from MA packed raw pork sausage (20% CO, 80% O). The strain produced biofilms and showed growth at high CO levels of up to 40%. Complete 16S rRNA gene and whole-genome sequences revealed that strain DH-B6 belongs to the genus , being closely related to strain DSM 16777 (98.4%), followed by NCTC11432 (98.3%) and KC1864 (98.2%). Average nucleotide identity value between DH-B6 and DSM 16777 was 81.1% and digital DNA–DNA hybridisation was 24.9%, respectively. The DNA G+C content was 35.51 mol%. Chemotaxonomical analysis revealed the presence of the rare glycine lipid cytolipin, the serine-glycine lipid flavolipin and the sulfonolipid sulfobacin A, as well as phosphatidylethanolamine, monohexosyldiacylglycerol and ornithine lipid, including the hydroxylated forms. Major fatty acids were iC (50.7%) and iC cis 9 (28.7%), followed by iC 2-OH (7.0%) and iC 3-OH (6.2%). The isolated strain contained MK-6 as the only respiratory quinone and flexirubin-like pigments were detected as the major pigments. Based on the phenotypic, chemotaxonomic and phylogenetic characteristics, the strain DH-B6 (=DSM 110542=LMG 31915) represents a novel species of the genus , for which the name sp. nov. is proposed. Emended descriptions of the genus and eight species of this genus based on polar lipid characterisation are also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005372
2022-05-05
2024-04-16
Loading full text...

Full text loading...

References

  1. Probst AJ, Elling FJ, Castelle CJ, Zhu Q, Elvert M et al. Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria. ISME J 2020; 14:1547–1560 [View Article] [PubMed]
    [Google Scholar]
  2. Fazi S, Ungaro F, Venturi S, Vimercati L, Cruz Viggi C et al. Microbiomes in soils exposed to naturally high concSoils Exposed to Naturally High Concentrations of CO2 (Bossoleto Mofette Tuscany, Italy). Front Microbiol 2019; 10:2238 [View Article] [PubMed]
    [Google Scholar]
  3. Belcher JN. Industrial packaging developments for the global meat market. Meat Sci 2006; 74:143–148 [View Article] [PubMed]
    [Google Scholar]
  4. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  5. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. NOTES: new perspectives in the classification of the flavobacteria: descripnew perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  6. Montero-Calasanz M del C, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst Appl Microbiol 2014; 37:342–350 [View Article] [PubMed]
    [Google Scholar]
  7. Kawai Y, Yano I, Kaneda K. Various kinds of lipoamino acids including a novel serine-containing lipid in an opportunistic pathogen Flavobacterium. Their structures and biological activities on erythrocytes. Eur J Biochem 1988; 171:73–80 [View Article] [PubMed]
    [Google Scholar]
  8. Bajerski F, Ganzert L, Mangelsdorf K, Padur L, Lipski A et al. Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield. Int J Syst Evol Microbiol 2013; 63:2666–2671 [View Article] [PubMed]
    [Google Scholar]
  9. Takikawa H, Nozawa D, Kayo A, Muto S, Mori K. Synthesis of sphingosine relatives. Part 22. Synthesis of sulfobacin A, B and flavocristamide A, new sulfonolipids isolated from Chryseobacterium sp. J Chem Soc, Perkin Trans 1 1999; 17:2467–2477 [View Article]
    [Google Scholar]
  10. Herzog P, Winkler I, Wolking D, Kämpfer P, Lipski A. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 2008; 58:26–33 [View Article] [PubMed]
    [Google Scholar]
  11. Hantsis-Zacharov E, Shakéd T, Senderovich Y, Halpern M. Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow’s milk. Int J Syst Evol Microbiol 2008; 58:2635–2639 [View Article] [PubMed]
    [Google Scholar]
  12. Douvoyiannis M, Kalyoussef S, Philip G, Mayers MM. Chryseobacterium indologenes bacteremia in an infant. Int J Infect Dis 2010; 14:e531–2 [View Article] [PubMed]
    [Google Scholar]
  13. Hsueh PR, Hsiue TR, Wu JJ, Teng LJ, Ho SW et al. Flavobacterium indologenes bacteremia: clinical and microbiological characteristics. Clin Infect Dis 1996; 23:550–555 [View Article] [PubMed]
    [Google Scholar]
  14. Chang Y-C, Lo H-H, Hsieh H-Y, Chang S-M. Identification, epidemiological relatedness, and biofilm formation of clinical Chryseobacterium indologenes isolates from central Taiwan. J Microbiol Immunol Infect 2015; 48:559–564 [View Article] [PubMed]
    [Google Scholar]
  15. Zeba B, De Luca F, Dubus A, Delmarcelle M, Simporé J et al. IND-6, a highly divergent IND-Type metallo-β-lactamase from Chryseobacterium indologenes strain 597 Isolated in Burkina Faso. Antimicrob Agents Chemother 2009; 53:4320–4326 [View Article] [PubMed]
    [Google Scholar]
  16. Mudarris M, Austin B, Segers P, Vancanneyt M, Hoste B et al. Flavobacterium scophthalmum sp. nov., a Pathogen of Turbot (Scophthalmus maximus L.). Int J Syst Bacteriol 1994; 44:447–453 [View Article] [PubMed]
    [Google Scholar]
  17. Ilardi P, Fernández J, Avendaño-Herrera R. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 2009; 59:3001–3005 [View Article] [PubMed]
    [Google Scholar]
  18. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. Capnophilic Bird Pathogens in the Family Flavobacteriaceae: Riemerella, Ornithobacterium and Coenonia, 3rd ed. New York, NY: Springer New York; 2006
    [Google Scholar]
  19. Muyzer G, Teske A, Wirsen CO, Jannasch HW. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 1995; 164:165–172 [View Article] [PubMed]
    [Google Scholar]
  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  21. Abou Abdallah R, Cimmino T, Baron S, Cadoret F, Michelle C et al. Description of Chryseobacterium timonianum sp. nov., isolated from a patient with pneumonia. Antonie vVan Leeuwenhoek 2017; 110:1121–1132 [View Article] [PubMed]
    [Google Scholar]
  22. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  25. Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford, New York: Oxford University Press; 2000
    [Google Scholar]
  26. Heidler von Heilborn D, Reinmüller J, Hölzl G, Meier-Kolthoff JP, Woehle C et al. Sphingomonas aliaeris sp. nov., a new species isolated from pork steak packed under modified atmosphere. Int J Syst Evol Microbiol 2021; 71:004973 [View Article] [PubMed]
    [Google Scholar]
  27. Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 2012; 78:717–725 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  30. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  33. Coico R. Gram staining. Curr Protoc Microbiol 2005; 00:A.3C.1- A.3C.2 [View Article] [PubMed]
    [Google Scholar]
  34. Kolari M, Nuutinen J, Salkinoja-Salonen MS. Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis. J Ind Microbiol Biotechnol 2001; 27:343–351 [View Article] [PubMed]
    [Google Scholar]
  35. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and iib. Int J Syst Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
  36. Reichenbach H, Kohl W, Bttger-Vetter A, Achenbach H. Flexirubin-type pigments in Flavobacterium. Arch Microbiol 1980; 126:291–293 [View Article]
    [Google Scholar]
  37. Netzer R, Stafsnes MH, Andreassen T, Goksøyr A, Bruheim P et al. Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases. J Bacteriol 2010; 192:5688–5699 [View Article] [PubMed]
    [Google Scholar]
  38. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. Newark, DE (USA): MIDI-Inc; 1990
  39. Wiertz R, Schulz SC, Müller U, Kämpfer P, Lipski A. Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 2013; 63:4495–4501 [View Article] [PubMed]
    [Google Scholar]
  40. Lipski A, Altendorf K. Identification of heterotrophic bacteria isolated from ammonia-supplied experimental biofilters. Syst Appl Microbiol 1997; 20:448–457 [View Article]
    [Google Scholar]
  41. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  42. IUPAC-IUB Commission on Biochemical Nomenclature The nomenclature of lipids. Lipids 1977; 12:455–468 [View Article]
    [Google Scholar]
  43. Hölzl G, Sohlenkamp C, Vences-Guzmán MA, Gisch N. Headgroup hydroxylation by OlsE occurs at the C4 position of ornithine lipid and is widespread in proteobacteria and bacteroidetes. Chem Phys Lipids 2018; 213:32–38 [View Article] [PubMed]
    [Google Scholar]
  44. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  45. Clark RB, Cervantes JL, Maciejewski MW, Farrokhi V, Nemati R et al. Serine lipids of Porphyromonas gingivalis are human and mouse toll-like receptor 2 ligands. Infect Immun 2013; 81:3479–3489 [View Article] [PubMed]
    [Google Scholar]
  46. Kamiyama T, Umino T, Satoh T, Sawairi S, Shirane M et al. Sulfobacins A and B, novel von willebrand factor receptor antagonists. I. production, isolation, characterization and biological activities. J Antibiot (Tokyo) 1995; 48:924–928 [View Article] [PubMed]
    [Google Scholar]
  47. Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Sinninghe Damsté JS. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry. Rapid Commun Mass Spectrom 2016; 30:739–750 [View Article] [PubMed]
    [Google Scholar]
  48. Kawazoe R, Okuyama H, Reichardt W, Sasaki S. Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae stanier strain C21. J Bacteriol 1991; 173:5470–5475 [View Article] [PubMed]
    [Google Scholar]
  49. Chhetri G, Kim J, Kim I, Kang M, Seo T. Chryseobacterium caseinilyticum sp. nov., a casein hydrolyzing bacterium isolated from rice plant and emended description of Chryseobacterium piscicola. Int J Syst Evol Microbiol 2021; 71:004854 [View Article] [PubMed]
    [Google Scholar]
  50. Kämpfer P, Vaneechoutte M, Lodders N, De Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009; 59:2421–2428 [View Article] [PubMed]
    [Google Scholar]
  51. Wu Y-F, Wu Q-L, Liu S-J. Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 2013; 63:913–919 [View Article] [PubMed]
    [Google Scholar]
  52. Chen XY, Zhao R, Chen ZL, Liu L, Li XD et al. Chryseobacterium polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Chryseobacterium. Antonie Van Leeuwenhoek 2015; 107:403–410 [View Article] [PubMed]
    [Google Scholar]
  53. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2016; 7:2003 [View Article] [PubMed]
    [Google Scholar]
  54. Kim KK, Bae H-S, Schumann P, Lee S-T. Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2005; 55:133–138 [View Article] [PubMed]
    [Google Scholar]
  55. Young C-C, Kämpfer P, Shen F-T, Lai W-A, Arun AB. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 2005; 55:423–426 [View Article] [PubMed]
    [Google Scholar]
  56. Hugo CJ, Segers P, Hoste B, Vancanneyt M, Kersters K. Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 2003; 53:771–777 [View Article] [PubMed]
    [Google Scholar]
  57. Holmes B, Owen RJ, Steigerwalt AG, Brenner DJ. Flavobacterium gleum, a new species found in human clinical specimens. Int J Syst Bacteriol 1984; 34:21–25 [View Article]
    [Google Scholar]
  58. Venil CK, Nordin N, Zakaria ZA, Ahmad WA. Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. Int J Syst Evol Microbiol 2014; 64:3153–3159 [View Article] [PubMed]
    [Google Scholar]
  59. Kämpfer P, Poppel MT, Wilharm G, Busse H-J, McInroy JA et al. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 2014; 64:1419–1427 [View Article] [PubMed]
    [Google Scholar]
  60. Park SC, Kim MS, Baik KS, Kim EM, Rhee MS et al. Chryseobacterium aquifrigidense sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2008; 58:607–611 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005372
Loading
/content/journal/ijsem/10.1099/ijsem.0.005372
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error