gen. nov., sp. nov., isolated from maize root rhizosphere No Access

Abstract

A facultative anaerobic, Gram-stain-positive, endospore-forming bacterium, isolated from the rhizosphere of maize roots (), was taxonomically studied. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-79 clustered only loosely with species and showed the highest similarity to (97.9%). The 16S rRNA gene sequence similarities to the sequences of the type strains of other species were 97.5 % and below. Chemotaxonomic features supported the grouping of the strain to the group, e.g. the major fatty acids were C anteiso, C iso and C, the polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid, the major quinone was menaquinone MK-7, and major compound in the polyamine pattern was spermidine. However, the JJ-79 genome assembly did not share most of the 11 conserved signature indels that are indicative of the genus . The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the JJ-79 genome assembly and those of the closest relative type strains were <71, <71 and <25 %, respectively. Physiological and biochemical test results were also different from those of the most closely related species. As a consequence, JJ-79 represents a novel genus for which we propose the name gen. nov., sp. nov., with JJ-79 (=CIP 111885=CCM 9045) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005367
2022-05-13
2024-03-29
Loading full text...

Full text loading...

References

  1. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article]
    [Google Scholar]
  2. Nagel M, Andreesen JR. Bacillus niacini sp. nov., a nicotinate-metabolizing mesophile isolated from soil. Int J Syst Bacteriol 1991; 41:134–139 [View Article]
    [Google Scholar]
  3. Logan NA, Lebbe L, Hoste B, Goris J, Forsyth G et al. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 2000; 50:1741–1753 [View Article] [PubMed]
    [Google Scholar]
  4. Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodríguez-Díaz M et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 2004; 54:47–57 [View Article]
    [Google Scholar]
  5. Ten LN, Baek S-H, Im W-T, Larina LL, Lee J-S et al. Bacillus pocheonensis sp. nov., a moderately halotolerant, aerobic bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2007; 57:2532–2537 [View Article] [PubMed]
    [Google Scholar]
  6. Nguyen N-L, Kim Y-J, Hoang V-A, Min JW, Liang Z-Q et al. Bacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013; 63:855–860 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang M-Y, Cheng J, Cai Y, Zhang T-Y, Wu Y-Y et al. Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of Panax notoginseng. Int J Syst Evol Microbiol 2017; 67:2581–2585 [View Article] [PubMed]
    [Google Scholar]
  8. Kämpfer P, Busse H-J, Glaeser SP, Kloepper JW, Hu C-H et al. Bacillus cucumis sp. nov. isolated from the rhizosphere of cucumber (Cucumis sativus). Int J Syst Evol Microbiol 2016; 66:1039–1044 [View Article] [PubMed]
    [Google Scholar]
  9. Liu B, Liu GH, Hu GH, Chen MC. Bacillus mesonae sp. nov., isolated from the root of Mesona chinensis. Int J Syst Evol Microbiol 2014; 64:3346–3352 [View Article] [PubMed]
    [Google Scholar]
  10. Jiang L, Lee MH, Jeong JC, Kim D-H, Kim CY et al. Neobacillus endophyticus sp. nov., an endophytic bacterium isolated from Selaginella involvens roots. Int J Syst Evol Microbiol 2019; 71:004581 [View Article] [PubMed]
    [Google Scholar]
  11. Han L, Yang G, Zhou X, Yang D, Hu P et al. Bacillus thermocopriae sp. nov., isolated from a compost. Int J Syst Evol Microbiol 2013; 63:3024–3029 [View Article] [PubMed]
    [Google Scholar]
  12. Yu L, Tang X, Wei S, Qiu Y, Xu X et al. Two novel species of the family Bacillaceae: Oceanobacillus piezotolerans sp. nov. and Bacillus piezotolerans sp. nov., from deep-sea sediment samples of Yap Trench. Int J Syst Evol Microbiol 2019; 69:3022–3030 [View Article]
    [Google Scholar]
  13. Bittar F, Bibi F, Ramasamy D, Lagier J-C, Azhar EI et al. Non contiguous-finished genome sequence and description of Bacillus jeddahensis sp. nov. Stand Genomic Sci 2015; 10:47 [View Article] [PubMed]
    [Google Scholar]
  14. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics London: Wiley; 1990 pp 115–175
    [Google Scholar]
  15. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467 [View Article] [PubMed]
    [Google Scholar]
  16. Coloqhoun JA. Discovery of deep-sea actinomycetes. PhD dissertation Canterbury, UK: Research School of Biosciences, University of Kent; 1997
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  18. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Ludwig W, Viver T, Westram R, Francisco Gago J, Bustos-Caparros E et al. Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol 2021; 44:126218 [View Article] [PubMed]
    [Google Scholar]
  21. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article] [PubMed]
    [Google Scholar]
  22. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  23. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  26. Katoh K, Standley DM. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 2016; 32:1933–1942 [View Article] [PubMed]
    [Google Scholar]
  27. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  28. Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dávila Felipe M et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 2018; 556:452–456 [View Article] [PubMed]
    [Google Scholar]
  29. Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD et al. GenBank. Nucleic Acids Res 2019; 47:D94–D99 [View Article] [PubMed]
    [Google Scholar]
  30. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  31. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article] [PubMed]
    [Google Scholar]
  32. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for Identification of members of the family Members of the Family Enterobacteriaceae. Zentralblatt für Bakteriologie 1990; 273:164–172 [View Article]
    [Google Scholar]
  33. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  34. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  35. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  36. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  37. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  38. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article] [PubMed]
    [Google Scholar]
  39. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. eds Taxnonomy of Prokaryotes, Methods in Microbiology vol 38 London: Academic Press; 2011 pp 101–129
    [Google Scholar]
  40. Busse H, Auling G. Polyamine pattern as a chemotaxonomic marker within the pPattern as a Chemotaxonomic Marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  41. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  42. Hamana K, Akiba T, Uchino F, Matsuzaki S. Distribution of spermine in bacilli and lactic acid bacteria. Can J Microbiol 1989; 35:450–455 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005367
Loading
/content/journal/ijsem/10.1099/ijsem.0.005367
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed