1887

Abstract

A Gram-stain-negative, aerobic, non-motile, short-rod-shaped bacterium, designated strain hg1, was isolated from marine sediment within the cold spring area of South China Sea and subjected to a polyphasic taxonomic investigation. Colonies were circular and 1.0–2.0 mm in diameter, coral in colour, convex and smooth after growth on marine agar at 28 °C for 3 days. Strain hg1 was found to grow at 4–40 °C (optimum, 35–37 °C), at pH 6.5–9.0 (optimum, pH 7.5) and with 0–8 % (w/v) NaCl (optimum, 1.5–2 %). Chemotaxonomic analysis showed the sole respiratory quinone was MK-7, and the principal fatty acids are iso-C, summed feature 3 (C ω7 and/or C ω6), and iso-C. The major polar lipids are phosphatidylethanolamine, an unidentified phospholipid and five unidentified glycolipids. The DNA G+C content of strain hg1 was 39.6 mol% based on the genome sequence. The comparison of 16S rRNA gene sequence similarities showed that hg1 was closely related to DSM 15282 (98.6 % sequence similarity), MCCC 1F01099 (97.9 %) and DSM 17529 (97.2 %); it exhibited 97.0 % or less sequence similarity to the type strains of other species of the genus with validly published names. Phylogenetic trees reconstructed with the neighbour-joining, maximum-parsimony and maximum-likelihood methods based on 16S rRNA gene sequences showed that strain hg1 constituted a separate branch with . , , in a clade of the genus . OrthoANI values between strain hg1 and . , and were 94.3, 74.1, 73.2 %, respectively, and DNA–DNA hybridization values were 56.2, 18.5 and 18.3 %, respectively. Differential phenotypic properties, together with phylogenetic distinctiveness, demonstrated that strain hg1 is clearly distinct from recognized species of genus . On the basis of these features, we propose that strain hg1 (=MCCC 1K03570=KCTC 72111) represents a novel species of the genus with the name sp. nov.

Funding
This study was supported by the:
  • Science and Technology Basic Resources Investigation Program of China (Award 2017FY100300)
    • Principle Award Recipient: MinWu
  • Key R&D Program of Zhejiang (Award 2022C03010)
    • Principle Award Recipient: MinWu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005365
2022-05-23
2024-04-18
Loading full text...

Full text loading...

References

  1. Bowman JP, Nichols CM, Gibson JAE. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003; 53:1343–1355 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–6 [View Article] [PubMed]
    [Google Scholar]
  3. Lee DH, Kahng HY, Lee SB. Algoriphagus jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:409–413 [View Article] [PubMed]
    [Google Scholar]
  4. Oh KH, Kang SJ, Lee SY, Park S, Oh TK et al. Algoriphagus namhaensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:575–579 [View Article] [PubMed]
    [Google Scholar]
  5. Shahina M, Hameed A, Lin SY, Lai WA, Hsu YH et al. Description of Algoriphagus taiwanensis sp. nov., a xylanolytic bacterium isolated from surface seawater, and emended descriptions of Algoriphagus mannitolivorans, Algoriphagus olei, Algoriphagus aquatilis and Algoriphagus ratkowskyi. Antonie van Leeuwenhoek 2014; 106:1031–1040 [View Article] [PubMed]
    [Google Scholar]
  6. Muraguchi Y, Kushimoto K, Ohtsubo Y, Suzuki T, Dohra H et al. Complete genome sequence of Algoriphagus sp. strain M8-2, Isolated from a Brackish Lake. Genome Announc 2016; 4:e00347-16 [View Article]
    [Google Scholar]
  7. Liu Y, Li H, Jiang JT, Liu YH, Song XF et al. Algoriphagus aquatilis sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2009; 59:1759–1763 [View Article] [PubMed]
    [Google Scholar]
  8. Park S, Kim S, Jung YT, Yoon JH. Algoriphagus confluentis sp. nov., isolated from the junction between the ocean and a freshwater lake. Int J Syst Evol Microbiol 2016; 66:118–124 [View Article] [PubMed]
    [Google Scholar]
  9. Park S, Kang SJ, Oh KH, Oh TK, Yoon JH. Algoriphagus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2010; 60:200–204 [View Article] [PubMed]
    [Google Scholar]
  10. Kang H, Weerawongwiwat V, Jung MY, Myung SC, Kim W. Algoriphagus chungangensis sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2013; 63:648–653 [View Article] [PubMed]
    [Google Scholar]
  11. Park S, Park JM, Lee KC, Yoon JH. Algoriphagus boseongensis sp. nov., a member of the family Cyclobacteriaceae isolated from a tidal flat. Antonie van Leeuwenhoek 2014; 105:523–531 [View Article] [PubMed]
    [Google Scholar]
  12. Park S, Ha MJ, Yoon SY, Jung YT, Yoon JH. Algoriphagus litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:5437–5443 [View Article] [PubMed]
    [Google Scholar]
  13. Yang C, Li Y, Guo Q, Lai Q, Zheng T et al. Algoriphagus zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013; 63:1621–1626 [View Article] [PubMed]
    [Google Scholar]
  14. Sun QL, Sun L. Description of Algoriphagus iocasae sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2017; 67:243–249 [View Article] [PubMed]
    [Google Scholar]
  15. Han JR, Zhao JX, Wang ZJ, Chen GJ, Du ZJ. Algoriphagus resistens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2017; 67:1275–1280 [View Article] [PubMed]
    [Google Scholar]
  16. Jia X, Jia B, Kim KH, Jeon CO. Algoriphagus aestuariicola sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2017; 67:914–919 [View Article] [PubMed]
    [Google Scholar]
  17. Park S, Park JM, Yoon JH. Algoriphagus marisflavi sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2017; 67:4168–4174 [View Article] [PubMed]
    [Google Scholar]
  18. Park S, Jung YT, Park JM, Yoon JH. Algoriphagus aquaemixtae sp. nov., isolated from water in an estuary environment. Int J Syst Evol Microbiol 2017; 67:3231–3236 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon JH, Lee MH, Kang SJ, Oh TK. Algoriphagus terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:777–780 [View Article] [PubMed]
    [Google Scholar]
  20. Young C-C, Lin S-Y, Arun AB, Shen F-T, Chen W-M et al. Algoriphagus olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2009; 59:2909–2915 [View Article] [PubMed]
    [Google Scholar]
  21. Santos AF, Pires F, Jesus HE, Santos ALS, Peixoto R et al. Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil. An Acad Bras Cienc 2015; 87:109–119 [View Article] [PubMed]
    [Google Scholar]
  22. Williams ST, Davies FL. Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 1965; 38:251–261 [View Article] [PubMed]
    [Google Scholar]
  23. Sun C, Xamxidin M, Wu Y-H, Cheng H, Wang C-S et al. Alteromonas alba sp. nov., a marine bacterium isolated from seawater of the West Pacific Ocean. Int J Syst Evol Microbiol 2019; 69:278–284 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  27. Chen C, Han S, Zhu Z, Fu G, Wang R et al. Idiomarina mangrovi sp. nov., isolated from rhizosphere soil of a mangrove Avicennia marina forest. Int J Syst Evol Microbiol 2019; 69:1662–1668 [View Article]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  29. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51:1639–1652 [View Article]
    [Google Scholar]
  30. Bernardet J-F, Nakagawa Y, Holmes B. Subcommittee On The Taxonomy Of Flavobacterium And Cytophaga-Like Bacteria Of The International Committee On Systematics Of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  31. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014; 64:2079–2083 [View Article] [PubMed]
    [Google Scholar]
  32. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  33. Zhang WY, Huo YY, Zhang XQ, Zhu XF, Wu M. Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 2013; 63:4380–4385 [View Article]
    [Google Scholar]
  34. Zhang X-Q, Wu Y-H, Zhou X, Zhang X, Xu X-W et al. Parvularcula flava sp. nov., an alphaproteobacterium isolated from surface seawater of the South China Sea. Int J Syst Evol Microbiol 2016; 66:3498–3502 [View Article] [PubMed]
    [Google Scholar]
  35. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [View Article] [PubMed]
    [Google Scholar]
  36. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: A parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article] [PubMed]
    [Google Scholar]
  37. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  38. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  39. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001; 29:22–28 [View Article] [PubMed]
    [Google Scholar]
  40. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  41. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  42. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  44. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  45. Yi H, Chun J. Hongiella mannitolivorans gen. nov., sp. nov., Hongiella halophila sp. nov. and Hongiella ornithinivorans sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54:157–162 [View Article]
    [Google Scholar]
  46. Nedashkovskaya OI, Kim SB, Kwon KK, Shin DS, Luo X et al. Proposal of Algoriphagus vanfongensis sp. nov., transfer of members of the genera Hongiella Yi and Chun 2004 emend. Nedashkovskaya et al. 2004 and Chimaereicella Tiago et al. 2006 to the genus Algoriphagus, and emended description of the genus Algoriphagus Bowman et al. 2003 emend. Nedashkovskaya et al. 2004. Int J Syst Evol Micr 2007; 57:1988–1994
    [Google Scholar]
  47. Jung YT, Lee JS, Yoon JH. Algoriphagus aestuarii sp. nov., a member of the Cyclobacteriaceae isolated from a tidal-flat sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2015; 65:3439–3446 [View Article] [PubMed]
    [Google Scholar]
  48. Song ZM, Wang KL, Yin Q, Chen CC, Xu Y. Algoriphagus kandeliae sp. nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 2020; 70:1672–1677 [View Article] [PubMed]
    [Google Scholar]
  49. Rau JE, Blotevogel KH, Fischer U. Algoriphagus aquaeductus sp. nov., isolated from a freshwater pipe. Int J Syst Evol Microbiol 2012; 62:675–682 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005365
Loading
/content/journal/ijsem/10.1099/ijsem.0.005365
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error