1887

Abstract

A Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, designated LAMRS1, was isolated from a soil sample collected in Hebei Province, PR China. Strain LAMRS1 was able to grow optimally in the presence of 0.5 % (w/v) NaCl, at pH 7.5 and at 30 °C. On the basis of 16S rRNA gene sequence analysis, strain LAMRS1 was closely related to members of the genus , with highest levels of sequence similarity to DSM 19298 (97.9 %), DSM 17072 (97.6%) and CTM (97.5 %). The average nucleotide identity and digital DNA–DNA hybridization values between LAMRS1 and the closely related species of DSM 19298, DSM 17072 and CTM were 78.1, 78.2 and 80.7 %, and 21.7, 22.0 and 23.7 %, respectively. The draft genome sequence of LAMRS1 was 4.61 Mb, with DNA G+C content of 36.2 mol%. The major isoprenoid quinone was menaquinone-6 and iso-C, iso-C 3-OH and summed feature 3 (C 6 and/or C 7) constituted the major cellular fatty acids. The main polar lipids were phosphatidylethanolamine, four aminolipids, three glycolipids and seven unidentified lipids. On the basis of evidence presented in this study, strain LAMRS1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LAMRS1 (=JCM 33868=KCTC 72823).

Funding
This study was supported by the:
  • Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province (Award GK2019-01)
    • Principle Award Recipient: ZhiyongRuan
  • Central Public-interest Scientific Institution Basal Research Fund (Award Y2021GH18)
    • Principle Award Recipient: ZhiyongRuan
  • Fundamental Research Funds for Central Non-profit Scientific Institution (Award 1610132020009)
    • Principle Award Recipient: ZhiyongRuan
  • National Natural Science Foundation of China (Award 31670006)
    • Principle Award Recipient: ZhiyongRuan
  • National Natural Science Foundation of China (Award 32070004)
    • Principle Award Recipient: ZhiyongRuan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005345
2022-05-03
2024-03-29
Loading full text...

Full text loading...

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Jeong JJ, Sang MK, Lee DW, Choi IG, Kim KD. Chryseobacterium phosphatilyticum sp. nov., a phosphatesolubilizing endophyte isolated from cucumber (Cucumis sativus L.) root. Int J Syst Evol Microbiol 2019; 69:610–615 [View Article] [PubMed]
    [Google Scholar]
  3. Zhao R, Chen XY, Li XD, Chen ZL, Li YH. Chryseobacterium takakiae sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 2015; 65:71–76 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Yang F, Liu H-M, Zhang R, Chen D-B, Wang X et al. Chryseobacterium shandongense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:1860–1865 [View Article] [PubMed]
    [Google Scholar]
  6. Benmalek Y, Cayol J-L, Bouanane NA, Hacene H, Fauque G et al. Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:1876–1880 [View Article] [PubMed]
    [Google Scholar]
  7. Park MS, Jung SR, Lee KH, Lee M-S, Do JO et al. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 2006; 56:433–438 [View Article] [PubMed]
    [Google Scholar]
  8. Strahan BL, Failor KC, Batties AM, Hayes PS, Cicconi KM et al. Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2011; 61:2162–2166 [View Article] [PubMed]
    [Google Scholar]
  9. Zhao Z, Tu Y-Q, Shen X, Han S-B, Zhang C-Y et al. Chryseobacterium lineare sp. nov., isolated from a limpid stream. Int J Syst Evol Microbiol 2017; 67:800–805 [View Article] [PubMed]
    [Google Scholar]
  10. Yoon JH, Kang SJ, Oh TK. Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 2007; 57:1355–1359 [View Article] [PubMed]
    [Google Scholar]
  11. Hantsis-Zacharov E, Senderovich Y, Halpern M. Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 2008; 58:1024–1028 [View Article] [PubMed]
    [Google Scholar]
  12. Behrendt U, Ulrich A, Schumann P. Chryseobacterium gregarium sp. nov., isolated from decaying plant material. Int J Syst Evol Microbiol 2008; 58:1069–1074 [View Article] [PubMed]
    [Google Scholar]
  13. Charimba G, Jooste P, Albertyn J, Hugo C. Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int J Syst Evol Microbiol 2013; 63:3243–3249 [View Article] [PubMed]
    [Google Scholar]
  14. Zamora L, Vela AI, Palacios MA, Sánchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium viscerum sp. nov., isolated from diseased fish. Int J Syst Evol Microbiol 2012; 62:2934–2940 [View Article]
    [Google Scholar]
  15. Yang Y, Song W, Lin H, Wang W, Du L et al. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ Int 2018; 116:60–73 [View Article] [PubMed]
    [Google Scholar]
  16. Zhang X, Zhu RR, Li WL, Ma JW, Lin H. Genomic insights into the antibiotic resistance pattern of the tetracycline-degrading bacterium, Arthrobacter nicotianae OTC-16. Sci Rep 2021; 11:15638 [View Article] [PubMed]
    [Google Scholar]
  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. Mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Sun C, Fu G-Y, Zhang C-Y, Hu J, Xu L et al. Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 2016; 82:2975–2987 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  31. Ruan Z, Wang Y, Song J, Jiang S, Wang H et al. Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol 2014; 64:518–521 [View Article] [PubMed]
    [Google Scholar]
  32. Wang X, Wang Y, Yang X, Sun H, Li B et al. Photobacterium alginatilyticum sp. nov., a marine bacterium isolated from bottom seawater. Int J Syst Evol Microbiol 2017; 67:1912–1917 [View Article] [PubMed]
    [Google Scholar]
  33. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  34. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  35. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  36. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  38. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Xu X-W, Huo Y-Y, Wang C-S, Oren A, Cui H-L et al. Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 2011; 61:1817–1822 [View Article]
    [Google Scholar]
  40. Kates M. Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier; 1986
    [Google Scholar]
  41. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge JT, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Microbiology, 3rd edn. Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005345
Loading
/content/journal/ijsem/10.1099/ijsem.0.005345
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error