1887

Abstract

Members of the anaerobic gut fungi () reside in the rumen and alimentary tract of larger mammalian and some reptilian, marsupial and avian herbivores. The recent decade has witnessed a significant expansion in the number of described genera and species. However, the difficulties associated with the isolation and maintenance of strains has greatly complicated comparative studies to resolve inter- and intra-genus relationships. Here, we provide an updated outline of taxonomy. We critically evaluate various morphological, microscopic and phylogenetic traits previously and currently utilized in taxonomy, and provide an updated key for quick characterization of all genera. We then synthesize data from taxa description manuscripts, prior comparative efforts and molecular sequence data to present an updated list of genera and species, with an emphasis on resolving relationships and identifying synonymy between recent and historic strains. We supplement data from published manuscripts with information and illustrations from strains in the authors’ collections. Twenty genera and 36 species are recognized, but the status of 10 species in the genera , and remains uncertain due to the unavailability of culture and conferre (.) strains, lack of sequence data, and/or inadequacy of available microscopic and phenotypic data. Six cases of synonymy are identified in the genera and , and two names in the genus are rejected based on apparent misclassification.

Funding
This study was supported by the:
  • National Science Foundation (Award 2029478)
    • Principle Award Recipient: NohaH. Youssef
  • National Science Foundation (Award 2029478)
    • Principle Award Recipient: MostafaS. Elshahed
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005322
2022-07-01
2024-02-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/7/ijsem005322.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005322&mimeType=html&fmt=ahah

References

  1. Berbee ML, James TY, Strullu-Derrien C. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu Rev Microbiol 2017; 71:41–60 [View Article]
    [Google Scholar]
  2. Honegger R. Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 1991; 42:553–578 [View Article]
    [Google Scholar]
  3. Smith SE, Read DJ. Mycorrhizal Symbiosis USA: Academic Press; 2008
    [Google Scholar]
  4. Möller M, Stukenbrock EH. Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 2017; 15:756–771
    [Google Scholar]
  5. Wang Y, Stata M, Wang W, Stajich JE, White MM et al. Comparative genomics reveals the core gene toolbox for the fungus-insect symbiosis. mBio 2018; 9:e00636–00618
    [Google Scholar]
  6. Fisher MC, Garner TWJ, Walker SF. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 2009; 63:291–310 [View Article]
    [Google Scholar]
  7. Orpin CG. Studies on the rumen flagellate Neocallimastix frontalis . J Gen Microbiol 1975; 91:249–262 [View Article]
    [Google Scholar]
  8. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 2014; 90:1–17
    [Google Scholar]
  9. Wang Y, Youssef N, Couger M, Hanafy R, Elshahed M et al. Comparative genomics and divergence time estimation of the anaerobic fungi in herbivorous mammals. mSystems 201900247–19
    [Google Scholar]
  10. Haitjema CH, Gilmore SP, Henske JK, Solomon KV, Rd G et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2017; 2:17087 [View Article]
    [Google Scholar]
  11. Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 2016; 351:1192–1195 [View Article] [PubMed]
    [Google Scholar]
  12. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA et al. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 2013; 79:4620–4634 [View Article] [PubMed]
    [Google Scholar]
  13. Murphy CL, Youssef NH, Hanafy RA, Couger MB, Stajich J et al. Horizontal gene transfer forged the evolution of anaerobic gut fungi into a phylogenetically distinct gut-dwelling fungal lineage. Appl Environ Microbiol 2019; 85:e00988–00919
    [Google Scholar]
  14. Orpin CG. The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis . J Gen Microbiol 1977; 99:215–218 [View Article] [PubMed]
    [Google Scholar]
  15. Orpin CG. On the induction of zoosporogenesis in the rumen phycomycetes Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis . J Gen Microbiol 1977; 101:181–189 [View Article] [PubMed]
    [Google Scholar]
  16. Orpin CG. Studies on the rumen flagellate Sphaeromonas communis . J Gen Microbiol 1976; 94:270–280 [View Article] [PubMed]
    [Google Scholar]
  17. Joblin KN. Isolation, enumeration, and maintenance of rumen anaerobic fungi in roll tubes. Appl Environ Microbiol 1981; 42:1119–1122 [View Article] [PubMed]
    [Google Scholar]
  18. Gruby D, H.M.O. D. Recherches sur les animalcules se devellopant en grand nombre dans l’estomac et dans les intestines pendant la digestion des animaux herbivores et carnivores. (research on animalcules which develop in large numbers in the stomach and intestines during the digestion of herbivorous and carnivorous animals). Comptes Rendus Hebdomaire Des Sciences De L’academie Des Sciences Paris 1843; 17:1304–1308
    [Google Scholar]
  19. Liebetanez E. Die parasitischen protozoen des widerkauermagens (the parasitic protozoa of the ruminant stomach). Archiv für Protistenkunde 1910; 19:19
    [Google Scholar]
  20. Braune R. Untersuchungen uber die im wiederkauermagen vorkommenden protozoen (investigations into the protozoa occurring in the ruminant stomach). Archiv fiir Protistenkunde 1913; 32:1–170
    [Google Scholar]
  21. Hsiung T-S. A Monograph on the Protozoa of the Large Intestine of the Horse Iowa State University; 1930
    [Google Scholar]
  22. Das Gupta M. Preliminary observations on the protozoan fauna of the indian goat, Capra hircus linn. Archiv fiir Protistenkunde 1935; 85:153–172
    [Google Scholar]
  23. Eadie JM. The development of rumen microbial populations in lambs and calves under various conditions of management. J Gen Microbiol 1962; 29:563–578 [View Article]
    [Google Scholar]
  24. Warner ACI. Diurnal changes in the concentrations of micro-organisms in the rumens of sheep fed to appetite in pens or at pasture. J Gen Microbiol 1966; 45:243–251 [View Article] [PubMed]
    [Google Scholar]
  25. Warner ACI. Diurnal changes in the concentrations of micro-organisms in the rumens of sheep fed limited diets once daily. J Gen Microbiol 1966; 45:213–235 [View Article] [PubMed]
    [Google Scholar]
  26. Orpin CG. The rumen flagellate Callimastix frontalis: does sequestration occur?. J Gen Microbiol 1974; 84:395–398 [View Article] [PubMed]
    [Google Scholar]
  27. Orpin CG. The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen. J Gen Microbiol 1977; 99:107–117 [View Article] [PubMed]
    [Google Scholar]
  28. Hanafy RA, Johnson B, Youssef NH, Elshahed MS. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ Microbiol 2020; 22:3883–3908 [View Article] [PubMed]
    [Google Scholar]
  29. Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS et al. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Front Microbiol 2017; 8:1657 [View Article] [PubMed]
    [Google Scholar]
  30. Paul SS, Bu D, Xu J, Hyde KD, Yu Z. A phylogenetic census of global diversity of gut anaerobic fungi and A new taxonomic framework. Fungal Divers 2018; 89:253–266 [View Article]
    [Google Scholar]
  31. Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 2010; 4:1225–1235 [View Article] [PubMed]
    [Google Scholar]
  32. Wei Y-Q, Yang H-J, Luan Y, Long R-J, Wu Y-J et al. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau. J Appl Microbiol 2016; 120:571–587 [View Article]
    [Google Scholar]
  33. Ho YW, Barr DJS. Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 2018; 87:655–677 [View Article]
    [Google Scholar]
  34. Heath IB, Bauchop T, Skipp RA. Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Can J Bot 1983; 61:295–307 [View Article]
    [Google Scholar]
  35. Hanafy RA, Elshahed MS, Liggenstoffer AS, Griffith GW, Youssef NH. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia 2017; 109:231–243 [View Article]
    [Google Scholar]
  36. Dagar SS, Kumar S, Griffith GW, Edwards JE, Callaghan TM et al. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol 2015; 119:731–737 [View Article]
    [Google Scholar]
  37. Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK et al. Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MC 2015; 9:11–28 [View Article]
    [Google Scholar]
  38. Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT et al. Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2015; 75:27–274 [View Article]
    [Google Scholar]
  39. GJea L. Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fung Div 2016; 78:1–237
    [Google Scholar]
  40. Henske JK, Gilmore SP, Knop D, Cunningham FJ, Sexton JA et al. Transcriptomic characterization of Caecomyces churrovis: a novel, non-rhizoid-forming lignocellulolytic anaerobic fungus. Biotechnol Biofuels 2017; 10:305 [View Article] [PubMed]
    [Google Scholar]
  41. Wilken SE, Monk JM, Leggieri PA, Lawson CE, Lankiewicz TS et al. Experimentally validated reconstruction and analysis of a genome-scale metabolic model of an anaerobic Neocallimastigomycota fungus. mSystems 2021; 6:e00002-21 [View Article] [PubMed]
    [Google Scholar]
  42. Munn EA, Orpin CG, Hall FJ. Ultrastructural studies of the free zoospore of the rumen phycomycete Neocallimastix frontalis . J Gen Microbiol 1981; 125:311–323 [View Article] [PubMed]
    [Google Scholar]
  43. Gold JJ, Heath IB, Bauchop T. Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae. Biosystems 1988; 21:403–415 [View Article]
    [Google Scholar]
  44. Barr DJS. The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. Biosystems 1981; 14:359–370 [View Article] [PubMed]
    [Google Scholar]
  45. Breton A, Bernalier A, Dusser M, Fonty G, Gaillard-Martinie B et al. Anaeromyces mucronatus nov. gen., nov. sp. a new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol Lett 1990; 70:177–182 [View Article]
    [Google Scholar]
  46. Ho YW, Barr DJS, Abdullah N. Anaeromyces, an earlier name for ruminomyces. Mycotaxon 1993; 47:283–284
    [Google Scholar]
  47. Ho YW, Bauchop T, Abdullah N, Jalluldin S. Ruminomyces elegans gen. et sp. nov., a polycentric anaerobic rumen fungus from cattle. Mycotaxon 1990; 38:397–405
    [Google Scholar]
  48. Sridhar M, Kumar D, Anandan S. Cyllamyces icaris sp. nov., a new anaearobic gut fungus with nodular sporangiophores isolated from indian water buffalo (Baubalus bubalis). Int J Curr Res Aca Rev 2014; 2:7–24
    [Google Scholar]
  49. Milne A, Theodorou MK, Jordan MGC, King-Spooner C, Trinci APJ. Survival of anaerobic fungi in feces, in saliva, and in pure culture. Exp Mycol 1989; 13:27–37 [View Article]
    [Google Scholar]
  50. Davies DR, Theodorou MK, Brooks AE, Trinci AP. Influence of drying on the survival of anaerobic fungi in rumen digesta and faeces of cattle. FEMS Microbiol Lett 1993; 106:59–63 [View Article] [PubMed]
    [Google Scholar]
  51. Davies DR, Theodorou MK, Lawrence MI, Trinci AP. Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces. J Gen Microbiol 1993; 139 Pt 6:1395–1400 [View Article] [PubMed]
    [Google Scholar]
  52. Brookman JL, Ozkose E, Rogers S, Trinci AP, Theodorou MK. Identification of spores in the polycentric anaerobic gut fungi which enhance their ability to survive. FEMS Microbiol Ecol 2000; 31:261–267 [View Article] [PubMed]
    [Google Scholar]
  53. Struchtemeyer CG, Ranganathan A, Couger MB, Liggenstoffer AS, Youssef NH et al. Survival of the anaerobic fungus Orpinomyces sp. strain C1A after prolonged air exposure. Sci Rep 2014; 4:6892 [View Article] [PubMed]
    [Google Scholar]
  54. Orpin CG. Isolation of cellulolytic phycomycete fungi from the caecum of the horse. J Gen Microbiol 1981; 123:287–296 [View Article] [PubMed]
    [Google Scholar]
  55. Hanafy RA, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Dagar SS et al. Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia 2020; 112:1212–1239 [View Article] [PubMed]
    [Google Scholar]
  56. Wubah DA, Fuller MS, Akin DE. Resistant body formation in Neocallimastix sp., an anaerobic fungus from the rumen of a cow. Mycologia 1991; 83:40 [View Article]
    [Google Scholar]
  57. Crabtree JN, Okagaki LH, Wiesner DL, Strain AK, Nielsen JN et al. Titan cell production enhances the virulence of Cryptococcus neoformans . Infect Immun 2012; 80:3776–3785 [View Article] [PubMed]
    [Google Scholar]
  58. Dore J, Stahl DA. Phylogeny of anaerobic rumen Chytridiomycetes inferred from small subunit ribosomal RNA sequence comparisons. Can J Bot 1991; 69:1964–1971 [View Article]
    [Google Scholar]
  59. Lockhart RJ, Van Dyke MI, Beadle IR, Humphreys P, McCarthy AJ. Molecular biological detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl Environ Microbiol 2006; 72:5659–5661 [View Article] [PubMed]
    [Google Scholar]
  60. Edwards JE, Kingston-Smith AH, Jimenez HR, Huws SA, Skøt KP et al. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol Ecol 2008; 66:537–545 [View Article] [PubMed]
    [Google Scholar]
  61. Hausner G, Inglis GD, Yanke LJ, Kawchuk LM, McAllister TA. Analysis of restriction fragment length polymorphisms in the ribosomal DNA of a selection of anaerobic chytrids. Can J Bot 2000; 78:917–927 [View Article]
    [Google Scholar]
  62. Brookman JL, Mennim G, Trinci APJ, Theodorou MK, Tuckwell DS. Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 185 rRNA. Microbiology (Reading) 2000; 146 (Pt 2):393–403 [View Article] [PubMed]
    [Google Scholar]
  63. Fliegerová K, Mrázek J, Voigt K. Differentiation of anaerobic polycentric fungi by rDNA PCR-RFLP. Folia Microbiol (Praha) 2006; 51:273–277 [View Article] [PubMed]
    [Google Scholar]
  64. Wang X, Liu X, Groenewald JZ. Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Antonie van Leeuwenhoek 2017; 110:87–103 [View Article] [PubMed]
    [Google Scholar]
  65. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 2012; 109:6241–6246 [View Article] [PubMed]
    [Google Scholar]
  66. Edwards JE, Hermes GDA, Kittelmann S, Nijsse B, Smidt H. Assessment of the accuracy of high-throughput sequencing of the ITS1 region of Neocallimastigomycota for community composition analysis. Front Micorobiol 2019; 10:2370
    [Google Scholar]
  67. Dagar SS, Kumar S, Mudgil P, Singh R, Puniya AK. D1/D2 domain of large-subunit ribosomal DNA for differentiation of orpinomyces spp. Appl Environ Microbiol 2011; 77:6722–6725 [View Article]
    [Google Scholar]
  68. Dagar S, Kumar S, Pitta D, Edwards J, Callaghan T et al. Large-subunit rDNA based differentiation of anaerobic rumen fungi using restriction fragment length polymorphism. J Anim Sci 2014; 92:340
    [Google Scholar]
  69. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 2006; 443:818–822 [View Article]
    [Google Scholar]
  70. Barr DJ, Kudo H, Jakober KD, Cheng KJ. Morphology and development of rumen fungi: nneocallimastix sp., ppiromyces communis, and oorpinomyces bovis gen.nov., sp.nov. Can J Bot 1989; 67:2815–2824
    [Google Scholar]
  71. Hanafy RA, Elshahed MS, Youssef NH. Feramyces austinii, gen. nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer. Mycologia 2018; 110:513–525 [View Article]
    [Google Scholar]
  72. Hanafy RA, Youssef NH, Elshahed MS. Paucimyces polynucleatus gen. nov, sp. nov., a novel polycentric genus of anaerobic gut fungi from the faeces of a wild blackbuck antelope. Int J Syst Evol Microbiol 2021; 71:004832 [View Article] [PubMed]
    [Google Scholar]
  73. Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW et al. Liebetanzomycespolymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 201889–110 [View Article]
    [Google Scholar]
  74. Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK. Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 2001; 79:666–673 [View Article]
    [Google Scholar]
  75. Stabel M, Hanafy RA, Schweitzer T, Greif M, Aliyu H et al. Aestipascuomyces dupliciliberans gen. nov, sp. nov., the first cultured representative of the uncultured SK4 clade from aoudad sheep and alpaca. Microorganisms 2020; 8:1734 [View Article]
    [Google Scholar]
  76. Hanafy RA, Johnson B, Elshahed MS, Youssef NH. Anaeromyces contortus, sp. nov., a new anaerobic gut fungal species (Neocallimastigomycota) isolated from the feces of cow and goat. Mycologia 2018; 110:502–512 [View Article] [PubMed]
    [Google Scholar]
  77. Bryant MP. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 1972; 25:1324–1328 [View Article] [PubMed]
    [Google Scholar]
  78. Hungate RE. A roll tube method for cultivation of strict anaerobes. Meth Microbiol 1969; 3:117–132
    [Google Scholar]
  79. Calkins S, Elledge NC, Hanafy RA, Elshahed MS, Youssef N. A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates. J Microbiol Methods 2016; 127:206–213 [View Article]
    [Google Scholar]
  80. Solomon KV, Henske JK, Theodorou MK, O’Malley MA. Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi. Anaerobe 2016; 38:39–46 [View Article] [PubMed]
    [Google Scholar]
  81. Nagpal R, Puniya AK, Sehgal JP, Singh K. Survival of anaerobic fungus Caecomyces sp. in various preservation methods: a comparative study. Mycoscience 2012; 53:427–432 [View Article]
    [Google Scholar]
  82. Bauchop T, Mountfort DO. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol 1981; 42:1103–1110 [View Article] [PubMed]
    [Google Scholar]
  83. Ranganathan A, Smith OP, Youssef NH, Struchtemeyer CG, Atiyeh HK et al. Utilizing anaerobic fungi for two-stage sugar extraction and biofuel production from lignocellulosic biomass. Front Microbiol 2017; 8:635 [View Article] [PubMed]
    [Google Scholar]
  84. Hillman ET, Li M, Hooker CA, Englaender JA, Wheeldon I et al. Hydrolysis of lignocellulose by anaerobic fungi produces free sugars and organic acids for two-stage fine chemical production with Kluyveromyces marxianus . Biotechnol Prog 2021; 37:e3172 [View Article] [PubMed]
    [Google Scholar]
  85. Swift CL, Louie KB, Bowen BP, Olson HM, Purvine SO et al. Anaerobic gut fungi are an untapped reservoir of natural products. Proc Natl Acad Sci U S A 2021; 118:e2019855118 [View Article] [PubMed]
    [Google Scholar]
  86. Wubah DA, Fuller MS. Neocallimastix: a comparative morphological study. Can J Bot 1991; 69:835–843 [View Article]
    [Google Scholar]
  87. Vavra J, Joyon L. Etude sur la morphologie, le cycle ivolutif et la position systematique de Callimastix cyclopsis Weissenberg 1912. (study on the morphology, the evolutionary cycle and the systematic position of Callimastix cyclopsis Weissenberg 1912). Protistologica 1966; 2:15
    [Google Scholar]
  88. Stewart CS, Mcpherson CA, Cansunar E. The effect of lasalocid on glucose uptake, hydrogen production and the solubilization of straw by the anaerobic rumen fungus Neocallimastix frontalis . Lett Appl Microbiol 1987; 5:5–7 [View Article]
    [Google Scholar]
  89. Dollhofer V, Callaghan TM, Dorn-In S, Bauer J, Lebuhn M. Development of three specific PCR-based tools to determine quantity, cellulolytic transcriptional activity and phylogeny of anaerobic fungi. J Microbiol Methods 2016; 127:28–40 [View Article]
    [Google Scholar]
  90. Ho YW, Barr DJS, Abdullah N, Jalaudin S, Kudo H. Neocallimastix variabilis, a new specis of anaerobic fungus from the rumen of cattle. Mycotaxon 1993; 46:241–258
    [Google Scholar]
  91. Webb J, Theodorou MK. Neocallimastix hurleyensis sp.nov., an anaerobic fungus from the ovine rumen. Can J Bot 1991; 69:1220–1224 [View Article]
    [Google Scholar]
  92. Orpin CG, Munn EA. Neocallimastix patriciarum sp.nov., a new member of the Neocallimasticaceae inhabiting the rumen of sheep. Trans Brit Mycol Soc 1986; 86:178–181 [View Article]
    [Google Scholar]
  93. Lowe SE, Theodorou MK, Trinci APJ. Isolation of anaerobic fungi from saliva and faeces of sheep. Microbiology 1987; 133:1829–1834 [View Article]
    [Google Scholar]
  94. Chen YC, Hseu RS, Cheng KJ. The genetic similarity of different generations of Neocallimastix frontalis SK. FEMS Microbiol Lett 2003; 221:227–231 [View Article] [PubMed]
    [Google Scholar]
  95. Li J, Heath IB. The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota. I. Cladistic analysis of rRNA sequences. Can J Bot 1992; 70:1738–1746 [View Article]
    [Google Scholar]
  96. Dollhofer V, Dandikas V, Dorn-In S, Bauer C, Lebuhn M et al. Accelerated biogas production from lignocellulosic biomass after pre-treatment with Neocallimastix frontalis. Bioresour Technol 2018; 264:219–227 [View Article]
    [Google Scholar]
  97. Leis S, Dresch P, Peintner U, Fliegerová K, Sandbichler AM et al. Finding a robust strain for biomethanation: anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens. Anaerobe 2014; 29:34–43 [View Article]
    [Google Scholar]
  98. Lowe SE, Theodorou MK, Trinci APJ, Hespell RB. Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid. Microbiology 1985; 131:2225–2229 [View Article]
    [Google Scholar]
  99. Lowe SE, Griffith GG, Milne A, Theodorou MK, Trinci APJ. The life cycle and growth kinetics of an anaerobic rumen fungus. Microbiology 1987; 133:1815–1827 [View Article]
    [Google Scholar]
  100. Stabel M, Schweitzer T, Haack K, Gorenflo P, Aliyu H et al. Isolation and biochemical characterization of six anaerobic fungal strains from zoo animal feces. Microorganisms 2021; 9:1655 [View Article]
    [Google Scholar]
  101. Chen Y-C, Tsai S-D, Cheng H-L, Chien C-Y, Hu C-Y et al. Caecomyces sympodialis sp. nov., a new rumen fungus isolated from Bos indicus. Mycologia 2007; 99:125–130 [View Article] [PubMed]
    [Google Scholar]
  102. Gaillard B, Citron A. Ultrastructural study of two rumen fungi: Piromonas communis and Sphaeromonas communis . Curr Microbiol 1989; 18:83–86 [View Article]
    [Google Scholar]
  103. Ho YW, Khoo IY, Tan SG, Abdullah N, Jalaludin S et al. Isozyme analysis of anaerobic rumen fungi and their relationship to aerobic chytrids. Microbiology (Reading) 1994; 140:1495–1504 [View Article] [PubMed]
    [Google Scholar]
  104. Edwards JE, Shetty SA, van den Berg P, Burden F, van Doorn DA et al. Multi-kingdom characterization of the core equine fecal microbiota based on multiple equine (sub)species. Anim Microbiome 2020; 2:6 [View Article] [PubMed]
    [Google Scholar]
  105. Ho YW, Barr DJS, Abdullah N, Jalaludin S, Kudo H. A new species of piromyces from the rumen of deer in malaysia. Mycotaxon 1993; 47:285–293
    [Google Scholar]
  106. Li J, Heath IB, Bauchop T. Piromyces mae and Piromyces dumbonica, two new species of uniflagellate anaerobic chytridiomycete fungi from the hindgut of the horse and elephant. Can J Bot 1990; 68:1021–1033 [View Article]
    [Google Scholar]
  107. Breton A, Dusser M, Gaillard-Martine B, Guillot J, Millet L et al. Piromyces rhizinflata nov. sp., a strictly anaerobic fungus from faeces of the Saharian ass: a morphological, metabolic and ultrastructural study. FEMS Microbiol Lett 1991; 82:1–8 [View Article]
    [Google Scholar]
  108. Gaillard-Martinie B, Breton A, Dusser M, Julliand V. Piromyces citronii sp. nov., a strictly anaerobic fungus from the equine caecum: a morphological, metabolic, and ultrastructural study. FEMS Microbiol Lett 1995; 130:321–326 [View Article]
    [Google Scholar]
  109. Chen Y-C. Piromyces polycephalus (Neocallimastigaceae), a new rumen fungus. Nova Hedwigia 2002; 75:409–414 [View Article]
    [Google Scholar]
  110. Ho YW, Barr DJS, Abdullah N, Jalaludin S, Kudo H. Piromyces spiralis, a new species of anaerobic fungus from the rumen of goat. Mycotaxon 1993; 48:59–68
    [Google Scholar]
  111. Karling JS. Indian chytrids. IV. Nowakowskiella multispora sp. nov. and other polycentric species. Sydowia 1963; 17:314–319
    [Google Scholar]
  112. Karling JS. Polycentric strains of phlyctorhiza variabilis. Am J Bot 1951; 38:772–777 [View Article]
    [Google Scholar]
  113. Akin DE, Rigsby LL. Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen. Appl Environ Microbiol 1987; 53:1987–1995 [View Article]
    [Google Scholar]
  114. Akin DE, Borneman WS, Windham WR. Rumen fungi: morphological types from Georgia cattle and the attack on forage cell walls. Biosystems 1988; 21:385–391 [View Article]
    [Google Scholar]
  115. Breton A, Bernalier A, Bonnemoy F, Fonty G, Gaillard B et al. Morphological and metabolic characterization of a new species of strictly anaerobic rumen fungus: Neocallimastix joyonii . FEMS Microbiol Lett 1989; 58:309–314 [View Article]
    [Google Scholar]
  116. Ho YW, Abdullah N, Jalaludin S. Orpinomyces intercalaris, a new species of polycentric anaerobic rumen fungus from cattle. Mycotaxon 1994; 50:141
    [Google Scholar]
  117. Fliegerová K, Hodrová B, Voigt K. Classical and molecular approaches as a powerful tool for the characterization of rumen polycentric fungi. Folia Microbiol (Praha) 2004; 49:157–164 [View Article] [PubMed]
    [Google Scholar]
  118. Li J, Heath IB, Cheng KJ. The development and zoospore ultrastructure of a polycentric chytridiomycete gut fungus, Orpinomyces joyonii comb. nov. Can J Bot 1991; 69:580–589 [View Article]
    [Google Scholar]
  119. Thareja A, Puniya AK, Goel G, Nagpal R, Sehgal JP et al. In vitro degradation of wheat straw by anaerobic fungi from small ruminants. Arch Anim Nutr 2006; 60:412–417 [View Article] [PubMed]
    [Google Scholar]
  120. Phillips MW, Gordon GLR. Carbohydrate fermentation by three species of polycentric ruminal fungi from cattle and water buffalo in tropical Australia. Anaerobe 1995; 1:41–47 [View Article] [PubMed]
    [Google Scholar]
  121. Nicholson MJ, McSweeney CS, Mackie RI, Brookman JL, Theodorou MK. Diversity of anaerobic gut fungal populations analysed using ribosomal ITS1 sequences in faeces of wild and domesticated herbivores. Anaerobe 2010; 16:66–73 [View Article] [PubMed]
    [Google Scholar]
  122. Jin W, Cheng YF, Mao SY, Zhu WY. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresour Technol 2011; 102:7925–7931 [View Article] [PubMed]
    [Google Scholar]
  123. Li Y, Li Y, Jin W, Sharpton TJ, Mackie RI et al. Combined genomic, transcriptomic, proteomic, and physiological characterization of the growth of Pecoramyces sp. F1 in monoculture and co-culture with a syntrophic methanogen. Front Microbiol 2019; 10:435 [View Article] [PubMed]
    [Google Scholar]
  124. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE 2013; 8:e47879 [View Article] [PubMed]
    [Google Scholar]
  125. Kittelmann S, Naylor GE, Koolaard JP, Janssen PH. A proposed taxonomy of anaerobic fungi (class Neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS ONE 2012; 7:e36866 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005322
Loading
/content/journal/ijsem/10.1099/ijsem.0.005322
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error