1887

Abstract

A Gram-negative, non-motile, strictly aerobic and rod- or filamentous-shaped strain, CJU-R4, was isolated from a flower of royal azalea () collected in the Republic of Korea. Strain CJU-R4 was catalase-positive and oxidase-negative, and grew at 15–33 °C (optimum, 28–20 °C), at pH 5.0–8.0 (optimum, pH 7.0–8.0), and in the presence of 0–1 % NaCl (w/v; optimum, 0 %). Strain CJU-R4 had the highest 16S rRNA gene sequence similarity to RHs22 (96.6 %), revealing less than 93 % sequence similarity to other type strains. Phylogenetic and phylogenomic analysis also revealed strain CJU-R4 formed a robust cluster with RHs22. The major fatty acids were summed feature 3 (comprising C 7 and/or C 6; 33.0 %), C 5 (22.1 %), iso-C (12.6 %) and C (10.7 %). The polar lipids were composed of phosphatidylethanolamine, three unidentified aminophospholipids, one unidentified phospholipid and four unidentified lipids. Menaquinone-7 was detected as the sole respiratory quinone. The genomic DNA G+C content was 55.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain CJU-R4 and DSM 28354 were 81.5 and 23.9 %, respectively. Based on the results of the phenotypic and genotypic analyses, strain CJU-R4 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CJU-R4 (=KACC 21264=NBRC 114513).

Funding
This study was supported by the:
  • National Institute of Agricultural Sciences (Award PJ013549)
    • Principle Award Recipient: Soon-WoKwon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005306
2022-03-29
2024-04-25
Loading full text...

Full text loading...

References

  1. Migula W. Über ein neues System der Bakterien. In Klein L, Migula W. eds Arbeiten Aus Dem Bakteriologischen Institut Der Technischen Hochschule Zu Karlsruhe 1894 pp 235–238
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Finster KW, Herbert RA, Lomstein BA. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma . Int J Syst Evol Microbiol 2009; 59:839–844 [View Article] [PubMed]
    [Google Scholar]
  4. Ten LN, Xu J-L, Jin F-X, Im W-T, Oh H-M et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:331–335 [View Article] [PubMed]
    [Google Scholar]
  5. Ahn J-H, Weon H-Y, Kim S-J, Hong S-B, Seok S-J et al. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma . Int J Syst Evol Microbiol 2014; 64:3230–3234 [View Article] [PubMed]
    [Google Scholar]
  6. Lee J-J, Srinivasan S, Lim S, Joe M, Im S et al. Spirosoma radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Curr Microbiol 2014; 69:286–291 [View Article] [PubMed]
    [Google Scholar]
  7. Lee J-J, Kang M-S, Joo ES, Kim MK, Im W-T et al. Spirosoma montaniterrae sp. nov., an ultraviolet and gamma radiation-resistant bacterium isolated from mountain soil. J Microbiol 2015; 53:429–434 [View Article] [PubMed]
    [Google Scholar]
  8. Yang SS, Tang K, Zhang X, Wang J, Wang X et al. Spirosoma soli sp. nov., isolated from biological soil crusts. Int J Syst Evol Microbiol 2016; 66:5568–5574 [View Article] [PubMed]
    [Google Scholar]
  9. Joo ES, Kim EB, Jeon SH, Srinivasan S, Kim MK. Spirosoma swuense sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67:532–536 [View Article] [PubMed]
    [Google Scholar]
  10. Li W, Lee S-Y, Park S, Kim B-O, Ten LN et al. Spirosoma lituiforme sp. nov., isolated from soil. J Microbiol 2017; 55:856–861
    [Google Scholar]
  11. Okiria J, Ten LN, Park S-J, Lee S-Y, Lee DH et al. Spirosoma migulaei sp. nov., isolated from soil. J Microbiol 2017; 55:927–932 [View Article]
    [Google Scholar]
  12. Zou R, Zhang Y, Zhou X, Wang Y, Peng F. Spirosoma flavum sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2017; 67:4911–4916 [View Article] [PubMed]
    [Google Scholar]
  13. Li W, Ten LN, Lee S-Y, Kang I-K, Jung H-Y. Spirosoma horti sp. nov., isolated from apple orchard soil. Int J Syst Evol Microbiol 2018; 68:930–935 [View Article] [PubMed]
    [Google Scholar]
  14. Li W, Lee S-Y, Kang I-K, Ten LN, Jung H-Y. Spirosoma agri sp. nov., isolated from apple orchard soil. Curr Microbiol 2018; 75:694–700 [View Article]
    [Google Scholar]
  15. Li W, Lee S-Y, Kang I-K, Ten LN, Jung H-Y. Spirosoma pomorum sp. nov., isolated from apple orchard soil. J Microbiol 2018; 56:90–96 [View Article] [PubMed]
    [Google Scholar]
  16. Li W, Ten LN, Lee S-Y, Lee DH, Jung H-Y. Spirosoma jeollabukense sp. nov., isolated from soil. Arch Microbiol 2018; 200:431–438 [View Article]
    [Google Scholar]
  17. Ten LN, Okiria J, Lee J-J, Lee S-Y, Park S et al. Spirosoma terrae sp. nov., isolated from soil from Jeju Island, Korea. Curr Microbiol 2018; 75:492–498 [View Article]
    [Google Scholar]
  18. Weilan L, Lee J-J, Lee S-Y, Park S, Ten LN et al. Spirosoma humi sp. nov., isolated from soil in South Korea. Curr Microbiol 2018; 75:328–335 [View Article]
    [Google Scholar]
  19. Kang H, Cha I, Kim H, Joh K. Spirosoma telluris sp. nov. and Spirosoma arboris sp. nov. isolated from soil and tree bark, respectively. Int J Syst Evol Microbiol 2020; 70:5355–5362 [View Article] [PubMed]
    [Google Scholar]
  20. Park Y, Maeng S, Damdintogtokh T, Zhang J, Kim M-K et al. Spirosoma profusum sp. nov., and Spirosoma validum sp. nov., radiation-resistant bacteria isolated from soil in South Korea. Antonie van Leeuwenhoek 2021; 114:1155–1164 [View Article]
    [Google Scholar]
  21. Elderiny N, Ten LN, Lee J-J, Lee S-Y, Park S et al. Spirosoma daeguensis sp. nov., isolated from beach soil. J Microbiol 2017; 55:678–683 [View Article]
    [Google Scholar]
  22. Lee J-J, Elderiny N, Lee S-Y, Lee DS, Kim MK et al. Spirosoma gilvum sp. nov., isolated from beach soil. Curr Microbiol 2017; 74:1425–1431 [View Article]
    [Google Scholar]
  23. Okiria J, Ten LN, Lee J-J, Lee S-Y, Cho Y-J et al. Spirosoma litoris sp. nov., a bacterium isolated from beach soil. Int J Syst Evol Microbiol 2017; 67:4986–4991 [View Article] [PubMed]
    [Google Scholar]
  24. Ten LN, Okiria J, Lee J-J, Lee S-Y, Kang I-K et al. Spirosoma koreense sp. nov., a species of the family Cytophagaceae isolated from beach soil. Int J Syst Evol Microbiol 2017; 67:5198–5204 [View Article] [PubMed]
    [Google Scholar]
  25. Ten LN, Elderiny N, Lee J-J, Lee S-Y, Park S et al. Spirosoma harenae sp. nov., a bacterium isolated from a sandy beach. Curr Microbiol 2018; 75:179–185 [View Article]
    [Google Scholar]
  26. Baik KS, Kim MS, Park SC, Lee DW, Lee SD et al. Spirosoma rigui sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007; 57:2870–2873 [View Article]
    [Google Scholar]
  27. Hatayama K, Kuno T. Spirosoma fluviale sp. nov., isolated from river water. Int J Syst Evol Microbiol 2015; 65:3447–3450 [View Article] [PubMed]
    [Google Scholar]
  28. Lee J-J, Lee Y-H, Park S-J, Lee S-Y, Kim B-O et al. Spirosoma knui sp. nov., a radiation-resistant bacterium isolated from the Han River. Int J Syst Evol Microbiol 2017; 67:1359–1365 [View Article] [PubMed]
    [Google Scholar]
  29. Li Y, Ai M-J, Sun Y, Zhang Y-Q, Zhang J-Q. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int J Syst Evol Microbiol 2017; 67:3144–3149 [View Article] [PubMed]
    [Google Scholar]
  30. Lee J-J, Lee YH, Park SJ, Lim S, Jeong S-W et al. Spirosoma fluminis sp. nov., a gamma-radiation resistant bacterium isolated from sediment of the Han river in South Korea. Curr Microbiol 2016; 73:689–695 [View Article] [PubMed]
    [Google Scholar]
  31. Lee J-J, Park S-J, Lee Y-H, Lee S-Y, Park S et al. Spirosoma luteolum sp. nov. isolated from water. J Microbiol 2017; 55:247–252 [View Article]
    [Google Scholar]
  32. Kim S-J, Ahn J-H, Weon H-Y, Hong S-B, Seok S-J et al. Spirosoma aerophilum sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2016; 66:2342–2346 [View Article] [PubMed]
    [Google Scholar]
  33. Joo ES, Lee J-J, Cha S, Jheong W, Seo T et al. Spirosoma pulveris sp. nov., a bacterium isolated from a dust sample collected at Chungnam province, South Korea. J Microbiol 2015; 53:750–755 [View Article] [PubMed]
    [Google Scholar]
  34. Kim D-U, Lee H, Kim S-G, Ahn J-H, Yoon Park S et al. Spirosoma aerolatum sp. nov., isolated from a motor car air conditioning system. Int J Syst Evol Microbiol 2015; 65:4003–4007 [View Article] [PubMed]
    [Google Scholar]
  35. Kim D-U, Lee H, Lee S, Park S, Yoon J-H et al. Spirosoma carri sp. nov., isolated from an automobile air conditioning system. Int J Syst Evol Microbiol 2017; 67:4195–4199 [View Article] [PubMed]
    [Google Scholar]
  36. Lee H, Kim D-U, Lee S, Park S, Yoon J-H et al. Spirosoma metallicus sp. nov., isolated from an automobile air conditioning system. J Microbiol 2017; 55:673–677 [View Article] [PubMed]
    [Google Scholar]
  37. Kim D-U, Lee H, Lee S, Park S, Yoon J-H et al. Spirosoma metallilatum sp. nov., isolated from an automotive air conditioning system. Int J Syst Evol Microbiol 2018; 68:523–528 [View Article] [PubMed]
    [Google Scholar]
  38. Fries J, Pfeiffer S, Kuffner M, Sessitsch A. Spirosoma endophyticum sp. nov., isolated from Zn- and Cd-accumulating Salix caprea . . Int J Syst Evol Microbiol 2013; 63:4586–4590 [View Article] [PubMed]
    [Google Scholar]
  39. Ambika Manirajan B, Suarez C, Ratering S, Rusch V, Geissler-Plaum R et al. Spirosoma pollinicola sp. nov., isolated from pollen of common hazel (Corylus avellana L.). Int J Syst Evol Microbiol 2018; 68:3248–3254 [View Article] [PubMed]
    [Google Scholar]
  40. Slabova OI, Nikitin DI. Influence of the incubation temperature on the reaction of oligotrophic bacteria to stress. Microbiology 2004; 73:650–653 [View Article]
    [Google Scholar]
  41. Lyautey E, Jackson CR, Cayrou J, Rols JL, Garabétian F. Bacterial community succession in natural river biofilm assemblages. Microb Ecol 2005; 50:589–601 [View Article] [PubMed]
    [Google Scholar]
  42. Lee JJ, Joo ES, Lee DH, Jung HY, Kim MK. Phylogenetic diversity and UV resistance analysis of radiation-resistant bacteria isolated from the water in Han River. Kor J Microbiol 2016; 52:65–73 [View Article]
    [Google Scholar]
  43. Tahon G, Lebbe L. Spirosoma utsteinense sp. nov. isolated from antarctic ice-free soils from the Utsteinen region, East Antarctica. Int J Syst Evol Microbiol 2021; 71:004754
    [Google Scholar]
  44. Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans ADL. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 1997; 143:2983–2989 [View Article] [PubMed]
    [Google Scholar]
  45. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  46. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  47. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  48. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  49. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  50. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  51. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  52. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9:678–687 [View Article] [PubMed]
    [Google Scholar]
  53. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  54. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  55. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  56. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  57. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  58. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  59. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  60. Dueholm MS, Albertsen M, Otzen D, Nielsen PH, Webber MA. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS ONE 2012; 7:e51274 [View Article]
    [Google Scholar]
  61. Kharadi RR, Sundin GW. Dissecting the process of xylem colonization through biofilm formation in Erwinia amylovora . J Plant Pathol 2020; 103:41–49 [View Article]
    [Google Scholar]
  62. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, WA W, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  63. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  64. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  65. Albuquerque L, Nobre MF, Wait R. The identification of polar lipids in prokaryotes. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005306
Loading
/content/journal/ijsem/10.1099/ijsem.0.005306
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error