1887

Abstract

Two strains (GL-11-2 and ZH2-Y79) were isolated from the seawater collected from the West Pacific Ocean and the East China Sea, respectively. Cells were Gram-stain-negative, strictly aerobic, non-motile and rod-shaped. Cells grew in the medium containing 0.5–7.5 % NaCl (w/v, optimum, 1.0–3.0 %), at pH 6.0–8.0 (optimum, pH 6.5–7.0) and at 4–40 °C (optimum, 30 °C). HS production occurred in marine broth supplemented with sodium thiosulphate. The almost-complete 16S rRNA gene sequences of the two isolates were identical, and exhibited the highest similarity to JCM 13603 (97.5 %), followed by TW15 (97.2%), DSM 15283 (97.1 %) and ITI-1157 (97.0 %). Phylogenetic analysis revealed that the isolates were affiliated with the family and represented an independent lineage. The sole isoprenoid quinone was ubiquinone 10. The principal fatty acids were summed feature 8 (C 7 and/or C 6) and cyclo-C 8. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and diphosphatidylglycerol. The DNA G+C content was 62.3 mol%. The orthologous average nucleotide identity, DNA–DNA hybridization and average amino acid identity values among the genomes of strain GL-11-2 and the reference strains were 73.2–79.0, 20.3–22.5 and 66.0–80.8 %, respectively. Strains GL-11-2ᵀ and ZH2-Y79 possessed complete metabolic pathways for thiosulphate oxidation, dissimilatory nitrate reduction and denitrification. Phylogenetic distinctiveness, chemotaxonomic differences and phenotypic properties revealed that the isolates represent a novel genus and species of the family , belonging to the class , for which the name gen. nov., sp. nov. (type strain, GL-11–2=KCTC 82723=MCCC M20691) is proposed.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41876182)
    • Principle Award Recipient: YuehongWu
  • China Ocean Mineral Resources Research and Development Association (Award DY135-B2-10)
    • Principle Award Recipient: YuehongWu
  • National Key R&D Program of China (Award 2018YFC0309904)
    • Principle Award Recipient: PengZhou
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005286
2022-03-25
2022-07-06
Loading full text...

Full text loading...

References

  1. Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter Clade” into a novel family, Roseobacteraceae fam. nov. Front Microbiol 2021; 12:683109 [View Article] [PubMed]
    [Google Scholar]
  2. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes Berlin, Heidelberg: Springer; 2014 pp 439–512
    [Google Scholar]
  3. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017; 11:1483–1499 [View Article] [PubMed]
    [Google Scholar]
  4. Yesson C, Clark MR, Taylor ML, Rogers AD. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Res I 2011; 58:442–453 [View Article]
    [Google Scholar]
  5. Samadi S, Bottan L, Macpherson E, De Forges BR, Boisselier M-C. Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates. Mar Biol 2006; 149:1463–1475 [View Article]
    [Google Scholar]
  6. Clark MR, Rowden AA, Schlacher T, Williams A, Consalvey M et al. The ecology of seamounts: structure, function, and human impacts. Ann Rev Mar Sci 2010; 2:253–278 [View Article] [PubMed]
    [Google Scholar]
  7. Qin YS, Yin H. Western pacific: the strategic priority in china deep sea research. Advances in Earth Science 2011; 26:245–248
    [Google Scholar]
  8. Lin ZJ, Wang XC, Xiu P, Chai F, Wu Q. Boundary phosphate transport of the East China sea and its influence on biological process. GEP 2019; 07:79–104 [View Article]
    [Google Scholar]
  9. Mashayek A, Ferrari R, Merrifield S, Ledwell JR, St Laurent L et al. Topographic enhancement of vertical turbulent mixing in the Southern Ocean. Nat Commun 2017; 8:14197 [View Article] [PubMed]
    [Google Scholar]
  10. Muck S, Griessler T, Köstner N, Klimiuk A, Winter C et al. Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses. Front Microbiol 2014; 5:264 [View Article] [PubMed]
    [Google Scholar]
  11. Chang Y-LK, Miyazawa Y, Béguer-Pon M, Han Y-S, Ohashi K et al. Physical and biological roles of mesoscale eddies in Japanese eel larvae dispersal in the western North Pacific Ocean. Sci Rep 2018; 8:5013 [View Article] [PubMed]
    [Google Scholar]
  12. Chang Y-L, Miyazawa Y, Béguer-Pon M, Hewitt J. The dynamical impact of mesoscale eddies on migration of Japanese eel larvae. PLoS ONE 2017; 12:e0172501 [View Article]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  14. Thomson JD, Higgins DG, Gibson TJ. CLUSTAL w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–174
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  20. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  22. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  23. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  24. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  25. Lechner M, Hernandez-Rosales M, Doerr D, Wieseke N, Thévenin A et al. Orthology detection combining clustering and synteny for very large datasets. PLoS One 2014; 9:e105015 [View Article] [PubMed]
    [Google Scholar]
  26. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  27. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  28. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  29. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1471–2105 [View Article] [PubMed]
    [Google Scholar]
  31. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  32. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  33. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–62 [View Article] [PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  35. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:e02475–19 [View Article]
    [Google Scholar]
  36. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  37. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  38. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the Roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [View Article] [PubMed]
    [Google Scholar]
  39. Wolfe AJ, Berg HC. Migration of bacteria in semisolid agar. Proc Natl Acad Sci USA 1989; 86:6973–6977 [View Article] [PubMed]
    [Google Scholar]
  40. Brown RC, Hopps HC. Staining of bacteria in tissue sections: a reliable Gram stain method. Am J Clin Pathol 1973; 60:234–240 [View Article] [PubMed]
    [Google Scholar]
  41. Monod J. The growth of bacterial cultures. Annu Rev Microbiol 1949; 3:371–394 [View Article]
    [Google Scholar]
  42. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  43. Zhang XQ, Wu YH, Zhou X, Zhang X, Xu XW et al. Parvularcula flava sp. nov., an alphaproteobacterium isolated from surface seawater of the South China Sea. Int J Syst Evol Microbiol 2016; 66:3498–3502 [View Article] [PubMed]
    [Google Scholar]
  44. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [View Article] [PubMed]
    [Google Scholar]
  45. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark (DE): MIDI Technical Note; 1990
    [Google Scholar]
  46. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  47. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology Washington, DC; USA: ASM Press; 2007
    [Google Scholar]
  48. Komagata K, Susuki K. Lipid and cell-wall systematics in bacterial systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  49. Motl N, Skiba MA, Kabil O, Smith JL, Banerjee R. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase–rhodanese fusion protein functions in sulfur assimilation. J Biol Chem 2017; 292:14026–14038 [View Article] [PubMed]
    [Google Scholar]
  50. Yoon JH, Lee SY, Kang SJ, Lee CH, Oh TK. Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007; 57:542–547 [View Article] [PubMed]
    [Google Scholar]
  51. Hameed A, Shahina M, Lin S-Y, Lai W-A, Hsu Y-H et al. Shimia biformata sp. nov., isolated from surface seawater, and emended description of the genus Shimia Choi and Cho 2006. Int J Syst Evol Microbiol 2013; 63:4533–4539 [View Article] [PubMed]
    [Google Scholar]
  52. Yi H, Chun J. Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 2006; 44:171–176 [PubMed]
    [Google Scholar]
  53. Petursdottir SK, Kristjansson JK. Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1997; 1:94–99 [View Article] [PubMed]
    [Google Scholar]
  54. Vandecandelaere I, Segaert E, Mollica A, Faimali M, Vandamme P. Phaeobacter caeruleus sp. nov., a blue-coloured, colony-forming bacterium isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 2009; 59:1209–1214 [View Article] [PubMed]
    [Google Scholar]
  55. Cha I-T, Park I, Lee H-W, Lee H, Park J-M et al. Pseudoruegeria aestuarii sp. nov., of the family Rhodobacteraceae, isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:3125–3131 [View Article] [PubMed]
    [Google Scholar]
  56. Hyun D-W, Shin N-R, Kim M-S, Kim PS, Kim JY et al. Pseudoruegeria haliotis sp. nov., isolated from the gut of the abalone Haliotis discus hannai. Int J Syst Evol Microbiol 2013; 63:4626–4632 [View Article] [PubMed]
    [Google Scholar]
  57. Jung YT, Kim BH, Oh TK, Yoon JH. Pseudoruegeria lutimaris sp. nov., isolated from a tidal flat sediment, and emended description of the genus Pseudoruegeria. Int J Syst Evol Microbiol 2010; 60:1177–1181 [View Article] [PubMed]
    [Google Scholar]
  58. Park S, Jung YT, Won SM, Yoon JH. Pseudoruegeria sabulilitoris sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2014; 64:3276–3281 [View Article] [PubMed]
    [Google Scholar]
  59. Zhang Y, Xu Y, Fang W, Wang X, Fang Z et al. Pseudoruegeria marinistellae sp. nov., isolated from an unidentified starfish in Sanya, China. Antonie van Leeuwenhoek 2017; 110:187–194 [View Article] [PubMed]
    [Google Scholar]
  60. Park S, Park JM, Yoon JH. Pseudoruegeria insulae sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2018; 68:3587–3592 [View Article] [PubMed]
    [Google Scholar]
  61. Arahal DR, La Mura A, Lucena T, Rodrigo-Torres L, Aznar R et al. Shimia thalassica sp. nov., and reclassification of Pseudopelagicola gijangensis as Shimia gijangensis comb. nov., and Thalassobius activus as Cognatishimia activa comb. nov. Int J Syst Evol Microbiol 2019; 69:3405–3413 [View Article]
    [Google Scholar]
  62. Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. Shimia isoporae sp. nov., isolated from the reef-building coral Isopora palifera. Int J Syst Evol Microbiol 2011; 61:823–827 [View Article] [PubMed]
    [Google Scholar]
  63. Choi DH, Cho BC. Shimia marina gen. nov., sp. nov., a novel bacterium of the Roseobacter clade isolated from biofilm in a coastal fish farm. Int J Syst Evol Microbiol 2006; 56:1869–1873 [View Article] [PubMed]
    [Google Scholar]
  64. Hyun D-W, Kim M-S, Shin N-R, Kim JY, Kim PS et al. Shimia haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 2013; 63:4248–4253 [View Article] [PubMed]
    [Google Scholar]
  65. Nogi Y, Mori K, Uchida H, Hatada Y. Shimia sagamensis sp. nov., a marine bacterium isolated from cold-seep sediment. Int J Syst Evol Microbiol 2015; 65:2786–2790 [View Article] [PubMed]
    [Google Scholar]
  66. Nogi Y, Mori K, Makita H, Hatada Y. Thalassobius abyssi sp. nov., a marine bacterium isolated from cold-seep sediment. Int J Syst Evol Microbiol 2016; 66:574–579 [View Article] [PubMed]
    [Google Scholar]
  67. Park S, Jung YT, Won SM, Park JM, Yoon JH. Thalassobius aquaeponti sp. nov., an alphaproteobacterium isolated from seawater. Antonie van Leeuwenhoek 2014; 106:535–542 [View Article] [PubMed]
    [Google Scholar]
  68. Kim Y-O, Park S, Nam B-H, Kim D-G, Yoon J-H. Pseudopelagicola gijangensis gen. nov., sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2014; 64:3447–3452 [View Article]
    [Google Scholar]
  69. Zhu S, Chen C, Cheng Y, Guo C, Peng N et al. Shimia sediminis sp. nov., a bacterium isolated from marine sediment in the East China Sea. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  70. Pujalte MJ, Lucena T, Rodrigo-Torres L, Arahal DR. Comparative genomics of Thalassobius including the description of Thalassobius activus sp. nov., and Thalassobius autumnalis sp. nov. Front Microbiol 2018; 8:2645 [View Article]
    [Google Scholar]
  71. Arahal DR, Macián MC, Garay E, Pujalte MJ. Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 2005; 55:2371–2376 [View Article]
    [Google Scholar]
  72. Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 1998; 44:201–210 [View Article]
    [Google Scholar]
  73. Iwaki H, Yasukawa N, Fujioka M, Takada K, Hasegawa Y. Isolation and characterization of a marine cyclohexylacetate-degrading bacterium Lutimaribacter litoralis sp. nov., and reclassification of Oceanicola pacificus as Lutimaribacter pacificus comb. nov. Curr Microbiol 2013; 66:588–593 [View Article] [PubMed]
    [Google Scholar]
  74. Park I, Cha IT, Seo MJ. Thalassobius litorarius sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:1666–1672 [View Article] [PubMed]
    [Google Scholar]
  75. Jin HM, Lee HJ, Kim JM, Park MS, Lee K et al. Litorimicrobium taeanense gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol 2011; 61:1392–1396 [View Article]
    [Google Scholar]
  76. Vandecandelaere I, Segaert E, Mollica A, Faimali M, Vandamme P. Leisingera aquimarina sp. nov., isolated from a marine electroactive biofilm, and emended descriptions of Leisingera methylohalidivorans Schaefer et al. 2002, Phaeobacter daeponensis Yoon et al. 2007 and Phaeobacter inhibens Martens et al. 2006. Int J Syst Evol Microbiol 2008; 58:2788–2793 [View Article]
    [Google Scholar]
  77. Park S, Park DS, Bae KS, Yoon JH. Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2014; 64:1378–1383 [View Article] [PubMed]
    [Google Scholar]
  78. Yoon JH, Kang SJ, Lee SY, Oh TK. Phaeobacter daeponensis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2007; 57:856–861 [View Article] [PubMed]
    [Google Scholar]
  79. Schaefer JK, Goodwin KD, McDonald IR, Murrell JC, Oremland RS. Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 2002; 52:851–859 [View Article] [PubMed]
    [Google Scholar]
  80. Arahal DR, Lucena T, Rodrigo-Torres L, Pujalte MJ. Ruegeria denitrificans sp. nov., a marine bacterium in the family Rhodobacteraceae with the potential ability for cyanophycin synthesis. Int J Syst Evol Microbiol 2018; 68:2515–2522 [View Article] [PubMed]
    [Google Scholar]
  81. Baek J, Kim JH, Sukhoom A, Kim W. Ruegeria sediminis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2020; 70:3055–3061 [View Article] [PubMed]
    [Google Scholar]
  82. Huo Y-Y, Xu X-W, Li X, Liu C, Cui H-L et al. Ruegeria marina sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61:347–350 [View Article] [PubMed]
    [Google Scholar]
  83. Kämpfer P, Arun AB, Rekha PD, Busse H-J, Young C-C et al. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol 2013; 63:2538–2544 [View Article] [PubMed]
    [Google Scholar]
  84. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Ruegeria meonggei sp. nov., an alphaproteobacterium isolated from ascidian Halocynthia roretzi. Antonie van Leeuwenhoek 2014; 105:551–558 [View Article] [PubMed]
    [Google Scholar]
  85. Kim Y-O, Park S, Nam B-H, Kang S-J, Hur YB et al. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2012; 62:925–930 [View Article] [PubMed]
    [Google Scholar]
  86. Lee J, Whon TW, Shin N-R, Roh SW, Kim J et al. Ruegeria conchae sp. nov., isolated from the ark clam Scapharca broughtonii. Int J Syst Evol Microbiol 2012; 62:2851–2857 [View Article] [PubMed]
    [Google Scholar]
  87. Lee K, Choo YJ, Giovannoni SJ, Cho JC. Ruegeria pelagia sp. nov., isolated from the Sargasso Sea, Atlantic Ocean. Int J Syst Evol Microbiol 2007; 57:1815–1818 [View Article] [PubMed]
    [Google Scholar]
  88. Oh KH, Jung YT, Oh TK, Yoon JH. Ruegeria faecimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2011; 61:1182–1188 [View Article] [PubMed]
    [Google Scholar]
  89. Park S, Yoon JH. Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Antonie van Leeuwenhoek 2012; 102:581–589 [View Article] [PubMed]
    [Google Scholar]
  90. Zhang G, Haroon MF, Zhang R, Dong X, Wang D et al. Ruegeria profundi sp. nov. and Ruegeria marisrubri sp. nov., isolated from the brine-seawater interface at Erba Deep in the Red Sea. Int J Syst Evol Microbiol 2017; 67:4624–4631 [View Article] [PubMed]
    [Google Scholar]
  91. Rüger HJ, Höfle MG. Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 1992; 42:133–143 [View Article]
    [Google Scholar]
  92. Lucena T, Ruvira MA, Macián MC, Pujalte MJ, Arahal DR. Description of Tropicibacter mediterraneus sp. nov. and Tropicibacter litoreus sp. nov. Syst Appl Microbiol 2013; 36:325–329 [View Article]
    [Google Scholar]
  93. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 2003; 53:1261–1269 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005286
Loading
/content/journal/ijsem/10.1099/ijsem.0.005286
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error