1887

Abstract

Non-human primates harbour diverse microbiomes in their guts. As a part of the China Microbiome Initiatives, we cultivated and characterized the gut microbiome of cynomolgus monkeys (). In this report, we communicate the characterization and taxonomy of eight bacterial strains that were obtained from faecal samples of captive cynomolgus monkeys. The results revealed that they represented eight novel bacterial species. The proposed names of the eight novel species are (type strain MSJ-5=CGMCC 1.45007=KCTC 15974), MSJd-7 (MSJd-7=CGMCC 1.45013=KCTC 25112), (MSJ-11=CGMCC 1.45009=KCTC 25065), (MSJ-4=CGMCC 1.45006=KCTC 15975), (MSJ-2=CGMCC 1.32896=KCTC 15976), MSJ-6 (MSJ-6=CGMCC 1.45008=KCTC 15973), (MSJ-1=CGMCC 1.31770=KCTC 15977) and (MSJ-40=CGMCC 1.45012=KCTC 25071).

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005276
2022-03-08
2022-05-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/3/ijsem005276.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005276&mimeType=html&fmt=ahah

References

  1. Van Treuren W, Dodd D. Microbial contribution to the human metabolome: implications for health and disease. Annu Rev Pathol 2020; 15:345–369 [View Article] [PubMed]
    [Google Scholar]
  2. Liu C, Du M-X, Abuduaini R, Yu H-Y, Li D-H et al. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome 2021; 9:119 [View Article] [PubMed]
    [Google Scholar]
  3. Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol 2019; 37:186–192 [View Article] [PubMed]
    [Google Scholar]
  4. Zou Y, Xue W, Luo G, Deng Z, Qin P et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 2019; 37:179–185 [View Article] [PubMed]
    [Google Scholar]
  5. Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat Med 2019; 25:1442–1452 [View Article] [PubMed]
    [Google Scholar]
  6. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533:543–546 [View Article] [PubMed]
    [Google Scholar]
  7. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP et al. Corrigendum: The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1:16219 [View Article] [PubMed]
    [Google Scholar]
  8. Liu C, Zhou N, Du M-X, Sun Y-T, Wang K et al. The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria. Nat Commun 2020; 11:79 [View Article] [PubMed]
    [Google Scholar]
  9. Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021; 203:5281–5308 [View Article] [PubMed]
    [Google Scholar]
  10. Nagpal R, Wang S, Solberg Woods LC, Seshie O, Chung ST et al. Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Front Microbiol 2018; 9:2897 [View Article] [PubMed]
    [Google Scholar]
  11. Manara S, Asnicar F, Beghini F, Bazzani D, Cumbo F et al. Microbial genomes from non-human primate gut metagenomes expand the primate-associated bacterial tree of life with over 1000 novel species. Genome Biol 2019; 20:299 [View Article] [PubMed]
    [Google Scholar]
  12. Podgorski II, Pantó L, Földes K, de Winter I, Jánoska M et al. Adenoviruses of the most ancient primate lineages support the theory on virus-host co-evolution. Acta Vet Hung 2018; 66:474–487 [View Article] [PubMed]
    [Google Scholar]
  13. Li X, Liang S, Xia Z, Qu J, Liu H et al. Establishment of a Macaca fascicularis gut microbiome gene catalog and comparison with the human, pig, and mouse gut microbiomes. Gigascience 2018; 7: [View Article] [PubMed]
    [Google Scholar]
  14. Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun 2018; 9:1786 [View Article] [PubMed]
    [Google Scholar]
  15. Orkin JD, Campos FA, Myers MS, Cheves Hernandez SE, Guadamuz A et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J 2019; 13:183–196 [View Article] [PubMed]
    [Google Scholar]
  16. Newman TM, Shively CA, Register TC, Appt SE, Yadav H et al. Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. Microbiome 2021; 9:100 [View Article] [PubMed]
    [Google Scholar]
  17. Brinkley AW, Mott GE. Anaerobic fecal bacteria of the baboon. Appl Environ Microbiol 1978; 36:530–532 [View Article] [PubMed]
    [Google Scholar]
  18. Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol 2017; 261:169–176 [View Article] [PubMed]
    [Google Scholar]
  19. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  20. Yin Q, Tao Y, Zhu X, Zhou Y, He X et al. Clostridium liquoris sp. nov., isolated from a fermentation pit used for the production of Chinese strong-flavoured liquor. Int J Syst Evol Microbiol 2016; 66:749–754 [View Article] [PubMed]
    [Google Scholar]
  21. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article] [PubMed]
    [Google Scholar]
  22. Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM et al. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 2001; 51:1245–1256 [View Article]
    [Google Scholar]
  23. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  24. Ezaki T, Kawamura Y, Li N, Li ZY, Zhao L et al. Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol 2001; 51:1521–1528 [View Article]
    [Google Scholar]
  25. Le Roy T, Van der Smissen P, Paquot A, Delzenne N, Muccioli GG et al. Dysosmobacter welbionis gen. nov., sp. nov., isolated from human faeces and emended description of the genus Oscillibacter. Int J Syst Evol Microbiol 2020; 70:4851–4858 [View Article]
    [Google Scholar]
  26. Eeckhaut V, Van Immerseel F, Teirlynck E, Pasmans F, Fievez V et al. Butyricicoccus pullicaecorum gen. nov., sp. nov., an anaerobic, butyrate-producing bacterium isolated from the caecal content of a broiler chicken. Int J Syst Evol Microbiol 2008; 58:2799–2802 [View Article]
    [Google Scholar]
  27. Collins MD, Shah HN. NOTES: Reclassification of Bacteroides praeacutus Tissier (Holdeman and Moore) in a New Genus, Tissierella, as Tissierella praeacuta comb. nov. Int J Syst Bacteriol 1986; 36:461–463 [View Article]
    [Google Scholar]
  28. Liu S, Shi W, Zhao G. China microbiome initiative: opportunity and challenges. Bull Chin Acad Sci 2017; 32:241–250
    [Google Scholar]
  29. Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, La Scola B et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28:237–264 [View Article] [PubMed]
    [Google Scholar]
  30. Mailhe M, Ricaboni D, Vitton V, Gonzalez J-M, Bachar D et al. Repertoire of the gut microbiota from stomach to colon using culturomics and next-generation sequencing. BMC Microbiol 2018; 18:157 [View Article] [PubMed]
    [Google Scholar]
  31. Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:2141–2146 [View Article] [PubMed]
    [Google Scholar]
  32. Rettedal EA, Gumpert H, Sommer MOA. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat Commun 2014; 5:4714 [View Article] [PubMed]
    [Google Scholar]
  33. Dione N, Khelaifia S, La Scola B, Lagier JC, Raoult D. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology. Clin Microbiol Infect 2016; 22:53–58 [View Article] [PubMed]
    [Google Scholar]
  34. Preston-Mafham J, Boddy L, Randerson PF. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles - a critique. FEMS Microbiol Ecol 2002; 42:1–14 [View Article] [PubMed]
    [Google Scholar]
  35. Sasser M. Technical note 101: Identification of bacteria by gas chromatography of cellular fatty acids. MIDI; 1990
  36. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  37. Bakir MA, Kitahara M, Sakamoto M, Matsumoto M, Benno Y. Bacteroides finegoldii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2006; 56:931–935 [View Article] [PubMed]
    [Google Scholar]
  38. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  39. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  40. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  41. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  42. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  43. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  44. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biology 1971; 20:406–416 [View Article]
    [Google Scholar]
  45. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  46. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  47. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  48. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  49. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  50. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3:289–306 [View Article] [PubMed]
    [Google Scholar]
  51. Duncan SH, Flint HJ. Probiotics and prebiotics and health in ageing populations. Maturitas 2013; 75:44–50 [View Article] [PubMed]
    [Google Scholar]
  52. Beye M, Bakour S, Le Dault E, Rathored J, Michelle C et al. Peptoniphilus lacydonensis sp. nov., a new human-associated species isolated from a patient with chronic refractory sinusitis. New Microbes New Infect 2018; 23:61–69 [View Article] [PubMed]
    [Google Scholar]
  53. Song Y, Liu C, Finegold SM. Peptoniphilus gorbachii sp. nov., Peptoniphilus olsenii sp. nov., and Anaerococcus murdochii sp. nov. isolated from clinical specimens of human origin. J Clin Microbiol 2007; 45:1746–1752 [View Article] [PubMed]
    [Google Scholar]
  54. Parte AC. LPSN-List of Prokaryotic Names with Standing in Nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article] [PubMed]
    [Google Scholar]
  55. Patel NB, Tito RY, Obregón-Tito AJ, O’Neal L, Trujillo-Villaroel O et al. Peptoniphilus catoniae sp. nov., isolated from a human faecal sample from a traditional Peruvian coastal community. Int J Syst Evol Microbiol 2016; 66:2019–2024 [View Article] [PubMed]
    [Google Scholar]
  56. Lee G-H, Rhee M-S, Chang D-H, Lee J, Kim S et al. Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 2013; 63:1942–1946 [View Article] [PubMed]
    [Google Scholar]
  57. Iino T, Mori K, Tanaka K, Suzuki KI, Harayama S. Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol 2007; 57:1840–1845 [View Article]
    [Google Scholar]
  58. Lawson P, Dainty RH, Kristiansen N, Berg J, Collins MD. Characterization of a psychrotrophic Clostridium causing spoilage in vacuum-packed cooked pork: description of Clostridium algidicarnis sp. nov. Lett Appl Microbiol 1994; 19:153–157 [View Article] [PubMed]
    [Google Scholar]
  59. Sturges WS, Drake ET. A complete description of Clostridium putrefaciens (McBryde). J Bacteriol 1927; 14:175–179 [View Article] [PubMed]
    [Google Scholar]
  60. Breed R, Hitchens AP. Bergey’s Manual of Determinative Bacteriology. Genus II Clostridium Baltimore: The Williams & Wilkins Co; 1948 pp 763–827
    [Google Scholar]
  61. Dong Y, Liu Y, Chen N, Zhong Y, Liu L et al. Clostridium beihaiense sp. nov., an anaerobic bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2018; 68:2789–2793 [View Article] [PubMed]
    [Google Scholar]
  62. Zhu H, Fu B, Lu S, Liu H, Liu H. Clostridium bovifaecis sp. nov., a novel acetogenic bacterium isolated from cow manure. Int J Syst Evol Microbiol 2018; 68:2956–2959 [View Article] [PubMed]
    [Google Scholar]
  63. Wu X-Y, Shi K-L, Xu X-W, Wu M, Oren A et al. Alkaliphilus halophilus sp. nov., a strictly anaerobic and halophilic bacterium isolated from a saline lake, and emended description of the genus Alkaliphilus. Int J Syst Evol Microbiol 2010; 60:2898–2902 [View Article] [PubMed]
    [Google Scholar]
  64. Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B et al. Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Ann NY Acad Sci 2008; 1125:230–241 [View Article] [PubMed]
    [Google Scholar]
  65. Yun JH, Lee JY, Kim PS, Jung MJ, Bae JW. Paenibacillus apis sp. nov. and Paenibacillus intestini sp. nov., isolated from the intestine of the honey bee Apis mellifera. Int J Syst Evol Microbiol 2017; 67:1918–1924 [View Article] [PubMed]
    [Google Scholar]
  66. Trachsel J, Humphrey S, Allen HK. Butyricicoccus porcorum sp. nov., a butyrate-producing bacterium from swine intestinal tract. Int J Syst Evol Microbiol 2018; 68:1737–1742 [View Article] [PubMed]
    [Google Scholar]
  67. Alauzet C, Marchandin H, Courtin P, Mory F, Lemée L et al. Multilocus analysis reveals diversity in the genus Tissierella: description of Tissierella carlieri sp. nov. in the new class Tissierellia classis nov. Syst Appl Microbiol 2014; 37:23–34 [View Article] [PubMed]
    [Google Scholar]
  68. Wylensek D, Hitch TCA, Riedel T, Afrizal A, Kumar N et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat Commun 2020; 11:6389 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005276
Loading
/content/journal/ijsem/10.1099/ijsem.0.005276
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error