1887

Abstract

The genus harbours bacteria presenting the ability to produce increased levels of crystalline nanocellulose, as well as strains used in the industrial production of fermented products and beverages. Still, most of the studies of this biotechnologically relevant genus were conducted based on limited phenotypic methodologies and taxonomical classifications. In this work, a detailed analysis of the currently described genus was conducted based on phylogenomic analysis, unveiling the phylogenomic relationships within the genus and allowing a detailed phylogenetic analysis of biotechnologically important genes such as those involved in cellulose biosynthesis ( genes). Phylogenomic and comparative genomic analysis revealed that several type strains formed an independent genomic group from those of other , prompting their reclassification as members of a novel genus, hereby termed gen. nov. The results support the reclassification of , , and as novel members of the genus . The species is the proposed representative of the novel genus. Importantly, phylogenetic analysis based on cellulose biosynthesis genes (, , , ), showed that the evolutionary history of these genes is closely related to the strain’s phylogenomic/taxonomic classification. Hence, the robust taxonomic classification of these bacteria will allow the better characterization and selection of strains for biotechnological applications.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005252
2022-02-17
2022-05-18
Loading full text...

Full text loading...

References

  1. Portela R, Leal CR, Almeida PL, Sobral RG. Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 2019; 12:586–610 [View Article] [PubMed]
    [Google Scholar]
  2. Jacek P, Dourado F, Gama M, Bielecki S. Molecular aspects of bacterial nanocellulose biosynthesis. Microb Biotechnol 2019; 12:633–649 [View Article] [PubMed]
    [Google Scholar]
  3. Wang J, Tavakoli J, Tang Y. Bacterial cellulose production, properties and applications with different culture methods - A review. Carbohydr Polym 2019; 219:63–76 [View Article] [PubMed]
    [Google Scholar]
  4. Römling U, Galperin MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 2015; 23:545–557 [View Article] [PubMed]
    [Google Scholar]
  5. Gomes RJ, Borges M de F, Rosa M de F, Castro-Gómez RJH, Spinosa WA. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technol Biotechnol 2018; 56:139–151 [View Article] [PubMed]
    [Google Scholar]
  6. Barja F, Andrés-Barrao C, Ortega Pérez R, Cabello EM, Chappuis M-L. Physiology of Komagataeibacter spp. during acetic acid fermentation. In Acetic Acid Bacteria Tokyo: Springer Japan; 2016 pp 201–221
    [Google Scholar]
  7. Liu L, Liu S, Wang Y, Bi J, Chen H et al. Komagataeibacter cocois sp. nov., a novel cellulose-producing strain isolated from coconut milk. Int J Syst Evol Microbiol 2018; 68:3125–3131 [View Article] [PubMed]
    [Google Scholar]
  8. Naloka K, Yukphan P, Matsutani M, Matsushita K, Theeragool G. Komagataeibacter diospyri sp. nov., a novel species of thermotolerant bacterial nanocellulose-producing bacterium. Int J Syst Evol Microbiol 2020; 70:251–258 [View Article]
    [Google Scholar]
  9. Sievers M, Sellmer S, Teuber M. Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in Central Europe. Syst Appl Microbiol 1992; 15:386–392 [View Article]
    [Google Scholar]
  10. Gosselé F, Swings J, Kersters K, Pauwels P, De Ley J. Numerical analysis of phenotypic features and protein gel electrophoregrams of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215. Syst Appl Microbiol 1983; 4:338–368 [View Article]
    [Google Scholar]
  11. Boesch C, Trcek J, Sievers M, Teuber M. Acetobacter intermedius, sp. nov. Syst Appl Microbiol 1998; 21:220–229 [View Article] [PubMed]
    [Google Scholar]
  12. Iino T, Suzuki R, Tanaka N, Kosako Y, Ohkuma M et al. Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar. Int J Syst Evol Microbiol 2012; 62:1465–1469 [View Article] [PubMed]
    [Google Scholar]
  13. Slapšak N, Cleenwerck I, De Vos P, Trček J. Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium. Syst Appl Microbiol 2013; 36:17–21 [View Article] [PubMed]
    [Google Scholar]
  14. Castro C, Cleenwerck I, Trček J, Zuluaga R, De Vos P et al. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 2013; 63:1119–1125 [View Article] [PubMed]
    [Google Scholar]
  15. Marič L, Cleenwerck I, Accetto T, Vandamme P, Trček J. Description of Komagataeibacter melaceti sp. nov. and Komagataeibacter melomenusus sp. nov. isolated from apple cider vinegar. Microorganisms 2020; 8:1178 [View Article]
    [Google Scholar]
  16. Lisdiyanti P, Navarro RR, Uchimura T, Komagata K. Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 2006; 56:2101–2111 [View Article] [PubMed]
    [Google Scholar]
  17. Sokollek SJ, Hertel C, Hammes WP. Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 1998; 48:935–940 [View Article] [PubMed]
    [Google Scholar]
  18. Škraban J, Cleenwerck I, Vandamme P, Fanedl L, Trček J. Genome sequences and description of novel exopolysaccharides producing species Komagataeibacter pomaceti sp. nov. and reclassification of Komagataeibacter kombuchae (Dutta and Gachhui 2007) Yamada et al., 2013 as a later heterotypic synonym of Komagataeibacter hansenii (Gosselé et al. 1983) Yamada et al., 2013. Syst Appl Microbiol 2018; 41:581–592 [View Article]
    [Google Scholar]
  19. Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D et al. Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 2005; 55:2365–2370 [View Article] [PubMed]
    [Google Scholar]
  20. Cleenwerck I, De Vos P, De Vuyst L. Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 2010; 60:2277–2283 [View Article] [PubMed]
    [Google Scholar]
  21. Yamada Y. Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less, acetate-oxidizing acetic acid bacteria with the Q-10 system. J Gen Appl Microbiol 1983; 29:417–420 [View Article]
    [Google Scholar]
  22. Schüller G, Hertel C, Hammes WP. Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 2000; 50:2013–2020 [View Article]
    [Google Scholar]
  23. Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D et al. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 2012; 58:397–404 [View Article]
    [Google Scholar]
  24. Yamada Y. Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. nov. Int J Syst Evol Microbiol 2014; 64:1670–1672 [View Article] [PubMed]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  26. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article]
    [Google Scholar]
  27. Ryngajłło M, Kubiak K, Jędrzejczak-Krzepkowska M, Jacek P, Bielecki S. Comparative genomics of the Komagataeibacter strains-efficient bionanocellulose producers. Microbiologyopen 2019; 8:e00731 [View Article] [PubMed]
    [Google Scholar]
  28. Gullo M, La China S, Petroni G, Di Gregorio S, Giudici P. Exploring K2G30 genome: a high bacterial cellulose producing strain in glucose and mannitol based media. Front Microbiol 2019; 10:1–12 [View Article] [PubMed]
    [Google Scholar]
  29. Lu T, Gao H, Liao B, Wu J, Zhang W et al. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Carbohydr Polym 2020; 232:115788 [View Article] [PubMed]
    [Google Scholar]
  30. Zhang H, Ye C, Xu N, Chen C, Chen X et al. Reconstruction of a genome-scale metabolic network of Komagataeibacter nataicola RZS01 for cellulose production. Sci Rep 2017; 7:7911 [View Article] [PubMed]
    [Google Scholar]
  31. Jang WD, Kim TY, Kim HU, Shim WY, Ryu JY et al. Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber. Biotechnol Bioeng 2019; 116:3372–3381 [View Article] [PubMed]
    [Google Scholar]
  32. Liu M, Liu L, Jia S, Li S, Zou Y et al. Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation. Sci Rep 2018; 8:6266 [View Article] [PubMed]
    [Google Scholar]
  33. Matsutani M, Ito K, Azuma Y, Ogino H, Shirai M et al. Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl Microbiol Biotechnol 2015; 99:7229–7240 [View Article] [PubMed]
    [Google Scholar]
  34. Andrés-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Pérez R et al. Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 2011; 193:2670–2671 [View Article]
    [Google Scholar]
  35. Pfeffer S, Mehta K, Brown RM. Complete genome sequence of a Gluconacetobacter hansenii ATCC 23769 isolate, AY201, producer of bacterial cellulose and important model organism for the study of cellulose biosynthesis. Genome Announc 2016; 4:e00808–e00816 [View Article] [PubMed]
    [Google Scholar]
  36. Kubiak K, Kurzawa M, Jędrzejczak-Krzepkowska M, Ludwicka K, Krawczyk M et al. Complete genome sequence of Gluconacetobacter xylinus E25 strain—valuable and effective producer of bacterial nanocellulose. J Biotechnol 2014; 176:18–19 [View Article] [PubMed]
    [Google Scholar]
  37. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  38. Komagata K, Iino T, Yamada Y. The Family Acetobacteraceae. In The Prokaryotes Berlin Heidelberg: Springer; 2014 pp 3–78
    [Google Scholar]
  39. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  40. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264
    [Google Scholar]
  41. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article] [PubMed]
    [Google Scholar]
  42. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  43. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  44. Mareuil F, Doppelt-Azeroual O, Ménager H, Mareuil F, Doppelt-Azeroual O et al. A public galaxy platform at Pasteur used as an execution engine for web services. F1000Res 2017; 6: [View Article]
    [Google Scholar]
  45. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  46. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  47. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  48. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article] [PubMed]
    [Google Scholar]
  49. Ryngajłło M, Jacek P, Cielecka I, Kalinowska H, Bielecki S. Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Appl Microbiol Biotechnol 2019; 103:6673–6688 [View Article] [PubMed]
    [Google Scholar]
  50. Du X, Jia S, Yang Y, Wang S. Genome sequence of Gluconacetobacter sp. strain SXCC-1, isolated from Chinese vinegar fermentation starter. J Bacteriol 2011; 193:3395–3396 [View Article] [PubMed]
    [Google Scholar]
  51. Nascimento FX, Torres CAV, Freitas F, Reis MAM, Crespo MTB. Functional and genomic characterization of Komagataeibacter uvaceti FXV3, a multiple stress resistant bacterium producing increased levels of cellulose. Biotechnology Reports 2021; 30:e00606 [View Article] [PubMed]
    [Google Scholar]
  52. Wong HC, Fear AL, Calhoon RD, Eichinger GH, Mayer R et al. Genetic organization of the cellulose synthase operon in Acetobacter xylinum . Proc Natl Acad Sci USA 1990; 87:8130–8134 [View Article] [PubMed]
    [Google Scholar]
  53. Du J, Vepachedu V, Cho SH, Kumar M, Nixon BT et al. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution. PLoS ONE 2016; 11:e0155886 [View Article] [PubMed]
    [Google Scholar]
  54. Gullo M, La China S, Falcone PM, Giudici P. Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:6885–6898 [View Article]
    [Google Scholar]
  55. Umeda Y, Hirano A, Ishibashi M, Akiyama H, Onizuka T et al. Cloning of cellulose synthase genes from Acetobacter xylinum JCM 7664: implication of a novel set of cellulose synthase genes. DNA Res 1999; 6:109–115 [View Article] [PubMed]
    [Google Scholar]
  56. Hernández-Arriaga AM, Del Cerro C, Urbina L, Eceiza A, Corcuera MA et al. Genome sequence and characterization of the bcs clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488. Microb Biotechnol 2019; 12:620–632 [View Article] [PubMed]
    [Google Scholar]
  57. McNamara JT, Morgan JLW, Zimmer J. A molecular description of cellulose biosynthesis. Annu Rev Biochem 2015; 84:895–921 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005252
Loading
/content/journal/ijsem/10.1099/ijsem.0.005252
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error