1887

Abstract

A novel Gram-stain-negative, aerobic, oxidase-positive, catalase-positive, non-motile, short rod-shaped, red-pigmented strain, designated as SYSU D00434, was isolated from a dry sandy soil sample collected from the Gurbantunggut desert in Xinjiang, north-west PR China. Strain SYSU D00434 was found to grow at 4–37 °C (optimum, 28–30 °C), pH 6.0–8.0 (optimum, pH 7.0) and with 0–1.5 % (w/v) NaCl (optimum, 0–0.5 %). The predominant respiratory quinone was MK-7 and the major fatty acids (>10 %) were C 5, iso-C, summed feature 3 (C 6 and/or C 7) and summed feature 4 (anteiso-C B and/or iso-C I). The polar lipids consisted of phosphatidylethanolamine, two unidentified polar lipids, two unidentified aminolipids, two unidentified phospholipids and two unidentified glycolipids. The genomic DNA G+C content of strain SYSU D00434 was 50.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain SYSU D00434 belonged to the family , and shared a sequence similarity of less than 94.6 % to all validly named taxa. Based on the phenotypic, phylogenetic and chemotaxonomic properties, strain D00434 is proposed to represent a new species of a new genus, named gen. nov., sp. nov., within the family . The type strain is SYSU D00434 (=CGMCC 1.18624=KCTC 82276=MCCC 1K04975).

Funding
This study was supported by the:
  • Xinjiang Uygur Autonomous Region regional coordinated innovation project (Award 2021E01018)
    • Principle Award Recipient: Wen-JunLi
  • Xinjiang Uygur Autonomous Region regional coordinated innovation project (Award 2020E01047)
    • Principle Award Recipient: LiLi
  • Natural Science Foundation of Guangdong Province (Award 2018A030313589)
    • Principle Award Recipient: LeiDong
  • National Natural Science Foundation of China (Award 32050410306)
    • Principle Award Recipient: OsamaAbdalla Abdelshafy Mohamad
  • National Natural Science Foundation of China (Award 32061143043)
    • Principle Award Recipient: Wen-JunLi
  • National Natural Science Foundation of China (Award 32000005)
    • Principle Award Recipient: LeiDong
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005248
2022-02-15
2024-04-19
Loading full text...

Full text loading...

References

  1. Krieg NR, Ludwig W, Euzéby J, Whitman WB. Phylum XIV. Bacteroidetes phyl. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. eds Bergey’s Manual of Systematic Bacteriology: Volume Four The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes New York, NY: Springer New York; 2010 pp 25–469
    [Google Scholar]
  2. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281–296 [View Article] [PubMed]
    [Google Scholar]
  3. Rickard AH, Stead AT, O’May GA, Lindsay S, Banner M et al. Adhaeribacter aquaticus gen. nov., sp. nov., a Gram-negative isolate from a potable water biofilm. Int J Syst Evol Microbiol 2005; 55:821–829 [View Article]
    [Google Scholar]
  4. Han M-X, Dong L, Asem MD, Jiao J-Y, Wang D et al. Botryobacter ruber gen. nov., sp. nov., a novel member of the family Hymenobacteraceae. Int J Syst Evol Microbiol 2019; 69:821–827 [View Article]
    [Google Scholar]
  5. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article]
    [Google Scholar]
  6. Kang JY, Chun J, Jahng KY. Nibribacter koreensis gen. nov., sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 2013; 63:4663–4668 [View Article]
    [Google Scholar]
  7. Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS et al. Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum “Bacteroidetes”, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 2005; 55:2583–2588 [View Article]
    [Google Scholar]
  8. Abaydulla G, Luo X, Shi J, Peng F, Liu M et al. Rufibacter tibetensis gen. nov., sp. nov., a novel member of the family Cytophagaceae isolated from soil. Antonie van Leeuwenhoek 2012; 101:725–731 [View Article]
    [Google Scholar]
  9. Liu Q, Liu H-C, Zhang J-L, Zhou Y-G, Xin Y-H. Rufibacter glacialis sp. nov., a psychrotolerant bacterium isolated from glacier soil. Int J Syst Evol Microbiol 2016; 66:315–318 [View Article] [PubMed]
    [Google Scholar]
  10. Kýrová K, Sedláček I, Pantůček R, Králová S, Holochová P et al. Rufibacter ruber sp. nov., isolated from fragmentary rock. Int J Syst Evol Microbiol 2016; 66:4401–4405 [View Article] [PubMed]
    [Google Scholar]
  11. Qu JH, Zhang LJ, Fu YH, Li HF. Rufibacter sediminis sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2019; 69:662–666 [View Article] [PubMed]
    [Google Scholar]
  12. Zhou J, Ma W-W, Qu J-H, Li H-F, Yang B-B et al. Rufibacter hautae sp. nov., a red-pigmented bacterium from freshwater lake sediment, and proposal of Rufibacter quisquiliarum as a latter heterotypic synonym of Rufibacter ruber. Int J Syst Evol Microbiol 2020; 70:5950–5957 [View Article] [PubMed]
    [Google Scholar]
  13. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  14. Leifson E. Atlas of Bacterial Flagellation New York: Academic Press; 1960 [View Article]
    [Google Scholar]
  15. Narsing Rao MP, Dong Z-Y, Kan Y, Zhang K, Fang B-Z et al. Description of Paenibacillus antri sp. nov. and Paenibacillus mesophilus sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 2020; 70:1048–1054 [View Article]
    [Google Scholar]
  16. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  17. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  18. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  19. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromat 2006; 5:2359–2367 [View Article]
    [Google Scholar]
  20. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [View Article] [PubMed]
    [Google Scholar]
  21. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  22. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology Wiley; 2007 pp 330–393
    [Google Scholar]
  23. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biology 1971; 20:406–416 [View Article]
    [Google Scholar]
  30. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  31. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  32. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  35. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  36. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  37. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  38. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  39. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  40. Salam N, Jiao JY, Zhang XT, Li WJ. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol 2020; 70:1331–1355 [View Article] [PubMed]
    [Google Scholar]
  41. Zhang Z-D, Gu M-Y, Zhu J, Li S-H, Zhang L-J et al. Rufibacter roseus sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol 2015; 65:1572–1577 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005248
Loading
/content/journal/ijsem/10.1099/ijsem.0.005248
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error