1887

Abstract

A Gram-negative, white-pigmented, motile and rod-shaped strain, BIT-L3, was isolated from the gut of plastic-eating mealworm L. Its taxonomic position was determined by using a polyphasic approach. A preliminary analysis based on the 16S rRNA gene sequence (1445 bp) revealed that this strain was closely related to the members within the family . Phylogenetic trees based on the concatenated partial sequences of seven housekeeping genes (, , , , , , ) and genome sequences further showed that strain BIT-L3 constituted a separate lineage within the family DNA–DNA hybridization values and average nucleotide identity values between strain BIT-L3 and its closest related species within the family were less than 21.8 and 76.7 %, respectively. The major fatty acids (>5 %) of strain BIT-L3 were C, C, C cyclo, summed feature 8 (comprising C ω7 and/or C ω6), summed feature 3 (comprising C ω7 and/or C ω6 and/or iso-C 2-OH) and summed feature 2 (comprising iso-C I/C 3-OH and/or C aldehyde and/or an unknown fatty acid of equivalent chain length 10.9525). Its genomic DNA G+C content was 53.7 mol%. Based on the results of phylogenetic, physiological and biochemical analyses, strain BIT-L3 is considered to represent a novel species of a novel genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is BIT-L3 (=CCTCC AB 2020371=LMG 32222=TBRC 14825).

Funding
This study was supported by the:
  • the Fundamental Research Funds for the Central Universities
    • Principle Award Recipient: YuYang
  • the Beijing Institute of Technology Research Fund Program for Young Scholars (Award No. 3160011181804)
    • Principle Award Recipient: YuYang
  • Young Elite Scientist Sponsorship Program of the China Association of Science and Technology (Award No. 2017QNRC001)
    • Principle Award Recipient: YuYang
  • National Natural Science Foundation of China (Award No. 51603004)
    • Principle Award Recipient: YuYang
  • National Natural Science Foundation of China (Award No. 31961133015)
    • Principle Award Recipient: YuYang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005246
2022-02-14
2024-12-03
Loading full text...

Full text loading...

References

  1. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article]
    [Google Scholar]
  2. Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect Genet Evol 2017; 54:108–127 [View Article] [PubMed]
    [Google Scholar]
  3. Xu Z, Xia M, Huo Y-X, Yang Y. Intestinirhabdus alba gen. nov., sp. nov., a novel genus of the family Enterobacteriaceae, isolated from the gut of plastic-eating larvae of the Coleoptera insect Zophobas atratus. Int J Syst Evol Microbiol 2020; 70:4951–4959 [View Article] [PubMed]
    [Google Scholar]
  4. Liu S, Jin D, Lan R, Wang Y, Meng Q et al. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int J Syst Evol Microbiol 2015; 65:2130–2134 [View Article] [PubMed]
    [Google Scholar]
  5. Huys G, Cnockaert M, Janda JM, Swings J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int J Syst Evol Microbiol 2003; 53:807–810 [View Article] [PubMed]
    [Google Scholar]
  6. Ribeiro TG, Clermont D, Branquinho R, Machado E, Peixe L et al. Citrobacter europaeus sp. nov., isolated from water and human faecal samples. Int J Syst Evol Microbiol 2017; 67:170–173 [View Article] [PubMed]
    [Google Scholar]
  7. Oberhettinger P, Schüle L, Marschal M, Bezdan D, Ossowski S et al. Description of Citrobacter cronae sp. nov., isolated from human rectal swabs and stool samples. Int J Syst Evol Microbiol 2020; 70:2998–3003 [View Article] [PubMed]
    [Google Scholar]
  8. Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol 2012; 7:887–902 [View Article] [PubMed]
    [Google Scholar]
  9. Wu W, Feng Y, Zong Z. Characterization of a strain representing a new Enterobacter species, Enterobacter chengduensis sp. nov. Antonie van Leeuwenhoek 2019; 112:491–500 [View Article] [PubMed]
    [Google Scholar]
  10. Jung J, Heo A, Park YW, Kim YJ, Koh H et al. Gut microbiota of Tenebrio molitor and their response to environmental change. J Microbiol Biotechnol 2014; 24:888–897 [View Article] [PubMed]
    [Google Scholar]
  11. Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 2014; 12:168–180 [View Article]
    [Google Scholar]
  12. Cariveau DP, Elijah Powell J, Koch H, Winfree R, Moran NA et al. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J 2014; 8:2369–2379 [View Article] [PubMed]
    [Google Scholar]
  13. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 2010; 107:20051–20056 [View Article] [PubMed]
    [Google Scholar]
  14. Yang Y, Yang J, Wu W-M, Zhao J, Song Y et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 2015; 49:12080–12086 [View Article] [PubMed]
    [Google Scholar]
  15. Yang Y, Yang J, Wu W-M, Zhao J, Song Y et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms. Environ Sci Technol 2015; 49:12087–12093 [View Article] [PubMed]
    [Google Scholar]
  16. Xia M, Wang J, Huo Y-X, Yang Y. Mixta tenebrionis sp. nov., isolated from the gut of the plastic-eating mealworm Tenebrio molitor L. Int J Syst Evol Microbiol 2020; 70:790–796 [View Article] [PubMed]
    [Google Scholar]
  17. Zhao Y, Wang Y, Li DH, Deng Y, Yang H. Chryseobacterium reticulitermitis sp. nov., isolated from the gut of Reticulitermes aculabialis. Int J Syst Evol Microbiol 2017; 67:1698–1702 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  23. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  24. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  25. Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 2005; 33:W451–4 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  31. Farris JS. Estimating phylogenetic trees from distance matrices. The American Naturalist 1972; 106:645–668 [View Article]
    [Google Scholar]
  32. Rameshkumar N, Lang E, Nair S. Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2010; 60:179–186 [View Article] [PubMed]
    [Google Scholar]
  33. Farmer JJ, Asbury MA, Hickman FW, Brenner DJ. The Enterobacteriaceae Study Group Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol 1980; 30:569–584 [View Article]
    [Google Scholar]
  34. Stephan R, Van Trappen S, Cleenwerck I, Vancanneyt M, De Vos P et al. Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. Int J Syst Evol Microbiol 2007; 57:820–826 [View Article] [PubMed]
    [Google Scholar]
  35. Inoue K, Sugiyama K, Kosako Y, Sakazaki R, Yamai S. Enterobacter cowanii sp. nov., a new species of the family Enterobacteriaceae. Curr Microbiol 2000; 41:417–420 [View Article] [PubMed]
    [Google Scholar]
  36. Behera P, Venkata Ramana V, Maharana B, Joseph N, Vaishampayan P et al. Mangrovibacter phragmitis sp. nov., an endophyte isolated from the roots of Phragmites karka. Int J Syst Evol Microbiol 2017; 67:1228–1234 [View Article] [PubMed]
    [Google Scholar]
  37. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 2013; 36:309–319 [View Article]
    [Google Scholar]
  38. Gao Z, Su C, Yang X, Sun D, Zeng C et al. Franconibacter daqui sp. nov., a facultatively alkaliphilic species isolated from a Daqu sample. Int J Syst Evol Microbiol 2017; 67:4962–4966 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005246
Loading
/content/journal/ijsem/10.1099/ijsem.0.005246
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error