1887

Abstract

A Gram-stain-positive, aerobic, motile, rod-shaped bacterium, designated strain LAM9210, was isolated from a saline soil sample collected from Lingxian County, Shandong Province, PR China. Analysis of the 16S rRNA gene sequence of the isolate revealed highest sequence similarities to the type strain of NCIMB 8841 (97.6 % sequence similarity). The genomic G+C content was 40.4 mol%. The average nucleotide identity and DNA–DNA hybridization values between strain LAM9210 and the type strain of the most closely related species NCIMB 8841 were 73.6 and 20.6 %, respectively. Strain LAM9210 was found to grow at 10–40 °C (optimum, 30 °C), at pH 6.0–10.0 (optimum, pH 9.0) and with 0–6 % (w/v) NaCl (optimum, 0.5 %), respectively. The major fatty acids were anteiso-C and iso-C. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and one unidentified phospholipid. Menaquinone-7 was detected as the predorminant respiratory quinone. Strain LAM9210 contained glycine, lysine, alanine and glutamic acid as the diagnostic amino acids in the cell-wall peptidoglycan. On the basis of phenotypic, phylogenetic and genotypic data, strain LAM9210 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LAM9210 (=CGMCC 1.18607=GDMCC 1.2002=JCM 32514).

Funding
This study was supported by the:
  • Western Light Project of Chinese Academy of Science (Award 2019-FPGGRC-002)
    • Principle Award Recipient: YanGao
  • National Key R&D Program of China (Award 2017YFD0800702)
    • Principle Award Recipient: ZhiyongRuan
  • special project for basic scientific activities of non-profit institutes supported the government of Xinjiang Uyghur Autonomous Region (Award KY2020105)
    • Principle Award Recipient: ZhiyongRuan
  • Science and Technology Planning Project of Shenzhen Municipality (Award 2020A01001-2)
    • Principle Award Recipient: ZhiyongRuan
  • Open Funds of Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin (Award Tarim University, BRZD1603)
    • Principle Award Recipient: ZhiyongRuan
  • National Natural Science Foundation of China (Award 31670006)
    • Principle Award Recipient: ZhiyongRuan
  • National Natural Science Foundation of China (Award NSFC 32070004)
    • Principle Award Recipient: ZhiyongRuan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005244
2022-02-16
2024-03-29
Loading full text...

Full text loading...

References

  1. Kluyver AJ, van Niel CB. Prospects for a natural classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1936; 94:369–403
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Yoon JH, Lee KC, Weiss N, Kho YH, Kang KH et al. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol 2001; 51:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  4. An SY, Haga T, Kasai H, Goto K, Yokota A. Sporosarcina saromensis sp. nov., an aerobic endospore-forming bacterium. Int J Syst Evol Microbiol 2007; 57:1868–1871 [View Article] [PubMed]
    [Google Scholar]
  5. Larkin JM, Stokes JL. Taxonomy of psychrophilic strains of Bacillus. J Bacteriol 1967; 94:889–895 [View Article] [PubMed]
    [Google Scholar]
  6. Kwon S-W, Kim B-Y, Song J, Weon H-Y, Schumann P et al. Sporosarcina koreensis sp. nov. and Sporosarcina soli sp. nov., isolated from soil in Korea. Int J Syst Evol Microbiol 2007; 57:1694–1698 [View Article] [PubMed]
    [Google Scholar]
  7. Sun Y, Zhao Q, Zhi D, Wang Z, Wang Y et al. Sporosarcina terrae sp. nov., isolated from orchard soil. Int J Syst Evol Microbiol 2017; 67:2104–2108 [View Article] [PubMed]
    [Google Scholar]
  8. Tominaga T, An SY, Oyaizu H, Yokota A. Sporosarcina luteola sp. nov. isolated from soy sauce production equipment in Japan. J Gen Appl Microbiol 2009; 55:217–223 [View Article] [PubMed]
    [Google Scholar]
  9. Kämpfer P, Falsen E, Lodders N, Schumann P. Sporosarcina contaminans sp. nov. and Sporosarcina thermotolerans sp. nov., two endospore-forming species. Int J Syst Evol Microbiol 2010; 60:1353–1357 [View Article] [PubMed]
    [Google Scholar]
  10. Wolfgang WJ, Coorevits A, Cole JA, De Vos P, Dickinson MC et al. Sporosarcina newyorkensis sp. nov. from clinical specimens and raw cow’s milk. Int J Syst Evol Microbiol 2012; 62:322–329 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang G, Ren H, Chen X, Zhang Y, Yang Y et al. Sporosarcina siberiensis sp. nov., isolated from the East Siberian Sea. Antonie van Leeuwenhoek 2014; 106:489–495 [View Article] [PubMed]
    [Google Scholar]
  12. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasetsVersion 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  21. Sun C, Fu G-Y, Zhang C-Y, Hu J, Xu L et al. Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 2016; 82:2975–2987 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  23. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  26. Rodriguez-R LM, Konstantinidis KT. The enveomics collection:a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016. DOI: 10.7287/peerj.preprints.1900v1e1900v1
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  28. Ruan Z, Wang Y, Song J, Jiang S, Wang H et al. Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol 2014; 64:518–521 [View Article] [PubMed]
    [Google Scholar]
  29. Wang X, Wang Y, Yang X, Sun H, Li B et al. Photobacterium alginatilyticum sp. nov., a marine bacterium isolated from bottom seawater. Int J Syst Evol Microbiol 2017; 67:1912–1917 [View Article] [PubMed]
    [Google Scholar]
  30. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  31. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  32. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:841–849 [View Article] [PubMed]
    [Google Scholar]
  33. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. eds Actinomycete Taxonomy Arlington: Society for Industrial Microbiology; 1980 pp 27–291
    [Google Scholar]
  34. MacKenzie SL. Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 1987; 70:151–160 [PubMed]
    [Google Scholar]
  35. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  36. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  37. Xu X-W, Huo Y-Y, Wang C-S, Oren A, Cui H-L et al. Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 2011; 61:1817–1822 [View Article]
    [Google Scholar]
  38. Kates M. Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier; 1986
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005244
Loading
/content/journal/ijsem/10.1099/ijsem.0.005244
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error