Skip to content
1887

Abstract

A Gram-negative, aerobic, non-flagellated and rod-shaped bacterium, strain ASW11-22, was isolated from an intertidal sediment collected from a coastal area of Qingdao, PR China. The strain grew at 15–40 °C (optimum, 37 °C), at pH 6.0–9.0 (optimum, pH 7.0) and with 0.5–10 % (w/v) NaCl (optimum, 1.0 %). It hydrolysed gelatin and aesculin but did not reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ASW11-22 belonged to the genus , showing the highest sequence similarity to the type strains of MCCC 1A06432 (98.20 %) and NH195 (97.84 %). The genomic DNA G+C content was 59.1 mol%. The major cellular fatty acid (>10 %) of the strain was summed feature 8 (C ω7 and/or C ω6) and its main polar lipids were phosphatidylglycerol and one unidentified aminolipid. The sole respiratory quinone of strain ASW11-22 was ubiquinone-10. On the basis of the polyphasic evidence presented in this paper, strain ASW11-22 represents a novel species, for which the name sp. nov. is proposed. The type strain is ASW11-22 (=KCTC 82495=MCCC 1K05584).

Funding
This study was supported by the:
  • Postdoctoral Research Foundation of China (Award 2021M691960)
    • Principle Award Recipient: Yu-QiangZhang
  • National Natural Science Foundation of China (Award 42076151)
    • Principle Award Recipient: Xi-YingZhang
  • Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (Award 2021L134)
    • Principle Award Recipient: YiLi
  • Basic Research Program of Shanxi Province (Award 20210302124004)
    • Principle Award Recipient: YiLi
  • Excellent Talents Come to Shanxi to Reward Scientific Research Projects (Award SXYBKY2019025)
    • Principle Award Recipient: YiLi
  • Scientific and Technological Innovation Programs of Shanxi Agricultural University (Award 2020BQ39)
    • Principle Award Recipient: YiLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005241
2022-02-14
2025-01-24
Loading full text...

Full text loading...

References

  1. Ivanova EP, Webb H, Christen R, Zhukova NV, Kurilenko VV et al. Celeribacter neptunius gen. nov., sp. nov., a new member of the class Alphaproteobacteria. Int J Syst Evol Microbiol 2010; 60:1620–1625 [View Article]
    [Google Scholar]
  2. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The Family Rhodobacteraceae. In DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes Berlin: Springer; 2014 pp 439–512
    [Google Scholar]
  3. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  4. Wang H, Zhang X, Yan S, Qi Z, Yu Y et al. Huaishuia halophila gen. nov., sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2012; 62:223–228 [View Article] [PubMed]
    [Google Scholar]
  5. Shu-Ling J, Yue-Hong W, Maripatay D, Aharon O T et al. Celeribacter ethanolicus sp. nov., isolated from seawater of the South China Sea. Microbiol China 2016; 43:907–916
    [Google Scholar]
  6. Taek Oh Y, Avedoza C, Lee S-S, Jeong SE, Jia B et al. Celeribacter naphthalenivorans sp. nov., a naphthalene-degrading bacterium from tidal flat sediment. Int J Syst Evol Microbiol 2015; 65:3073–3078 [View Article] [PubMed]
    [Google Scholar]
  7. Lai Q, Cao J, Yuan J, Li F, Shao Z. Celeribacter indicus sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from deep-sea sediment and reclassification of Huaishuia halophila as Celeribacter halophilus comb. nov. Int J Syst Evol Microbiol 2014; 64:4160–4167 [View Article] [PubMed]
    [Google Scholar]
  8. Lee SY, Park S, Oh TK, Yoon JH. Celeribacter baekdonensis sp. nov., isolated from seawater, and emended description of the genus Celeribacter Ivanova et al. 2010. Int J Syst Evol Microbiol 2012; 62:1359–1364 [View Article] [PubMed]
    [Google Scholar]
  9. Wang L, Liu Y, Wang Y, Dai X, Zhang XH. Celeribacter manganoxidans sp. nov., a manganese-oxidizing bacterium isolated from deep-sea sediment of a polymetallic nodule province. Int J Syst Evol Microbiol 2015; 65:4180–4185 [View Article] [PubMed]
    [Google Scholar]
  10. Baek K, Choi A, Kang I, Cho JC. Celeribacter marinus sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2014; 64:1323–1327 [View Article] [PubMed]
    [Google Scholar]
  11. Romanenko LA, Tanaka N, Svetashev VI, Mikhailov VV. Vadicella arenosi gen. nov., sp. nov., a novel member of the class Alphaproteobacteria isolated from sandy sediments from the Sea of Japan seashore. Curr Microbiol 2011; 62:795–801 [View Article] [PubMed]
    [Google Scholar]
  12. Jami M, Lai Q, Ghanbari M, Moghadam MS, Kneifel W et al. Celeribacter persicus sp. nov., a polycyclic-aromatic-hydrocarbon-degrading bacterium isolated from mangrove soil. Int J Syst Evol Microbiol 2016; 66:1875–1880 [View Article] [PubMed]
    [Google Scholar]
  13. Lane DJ. 16S/23S rRNA sequencing. In E S, M G. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  14. Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C et al. Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Natl Acad Sci U S A 2008; 105:9262–9267 [View Article] [PubMed]
    [Google Scholar]
  15. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Moore GW, Goodman M, Callahan C, Holmquist R, Moise H. Stochastic versus augmented maximum parsimony method for estimating superimposed mutations in the divergent evolution of protein sequences. Methods tested on cytochrome c amino acid sequences. J Mol Biol 1976; 105:15–37 [View Article] [PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  21. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [View Article] [PubMed]
    [Google Scholar]
  22. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  23. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–5 [View Article] [PubMed]
    [Google Scholar]
  24. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  25. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article] [PubMed]
    [Google Scholar]
  26. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  27. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  30. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  32. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM et al. Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst Appl Microbiol 2005; 28:123–130 [View Article] [PubMed]
    [Google Scholar]
  33. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, WA W, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 21–41
    [Google Scholar]
  34. Smibert RM, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  35. Komagata K, Suzuki KI. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  36. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005241
Loading
/content/journal/ijsem/10.1099/ijsem.0.005241
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error